Calculation

Resulting and equivalent bearing loads

For angular-contact thrust ball bearings

 LGN and LGFAngular-contact thrust ball bearings are preloaded. The chart shows the resulting axial bearing load $F_{\text {ax }}$ as a function of preload and axial operating load $F_{\text {Lax }}$. For a purely axial load $F_{\text {comb }}=F_{a x}$.

$\alpha=60^{\circ}$	\mathbf{X}	\mathbf{Y}
$\frac{F_{\text {ax }}}{F_{\text {rad }}} \leq 2.17$	1.90	0.55
$\frac{F_{\text {ax }}}{\mathrm{F}_{\mathrm{rad}}}>2.17$	0.92	1.00

$\alpha \quad=$ pressure angle
$\mathrm{F}_{\mathrm{ax}}=$ resulting bearing load
$\mathrm{F}_{\text {Lax }}=$ operating load
$\mathrm{X}, \mathrm{Y}=$ dimensionless factor

If the radial operating forces are not insignificant, the equivalent bearing loads are calculated according to formula 20.
Bearings for Ball Screw Assemblies are also suitable to accommodate tipping forces. The moments that usually occur due to the mass and drive motion of the screw do not generally need to be included in the calculation of the equivalent bearing load.

Permissible static axial load for bearing series LGF

The permissible static axial load of LGF series bearings in screw-down direction is:

The static axial load rating C_{0} is stated in the Dimension Tables.

[^0]
Calculation

Resulting and equivalent bearing loads

For angular-contact thrust ball bearings LGL Before determining the combined equivalent load, $\mathbf{F}_{\text {comb, }}$ you must check the bearing size for the static limit load using the diagram. In this connection, the intersection point of the
$\mathrm{F}_{\text {comb }}=\mathrm{X} \cdot \mathrm{F}_{\mathrm{rad}}{ }^{\mathrm{A}}+\mathrm{Y} \cdot \mathrm{F}_{\mathrm{ax}}{ }^{\mathrm{B}}+\mathrm{Z} \quad 21$

Bearing size	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{A}	\mathbf{B}
LGL-D-0624	0.003	0.1300	140	1.90	1.40
LGL-A-1244	0.076	0.0460	580	1.28	1.30
LGL-A-1547	0.022	0.0110	540	1.45	1.50
LGL-A-2060	0.017	0.0082	960	1.45	1.50

| $\mathrm{F}_{\mathrm{ax}}=$ axial bearing load | (N) |
| :--- | :--- | ---: |
| $\mathrm{F}_{\text {comb }}=$ combined equivalent load | (N) |
| $\mathrm{F}_{\text {rad }}=$ radial bearing load | (N) |
| $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ = calculation factors | $(-)$ |
| $\mathrm{A}, \mathrm{B}=$ exponents | $(-)$ |

$F_{\text {ax }}=$ axial bearing load (N)
$\mathrm{F}_{\text {rad }}=$ radial bearing load $\quad(\mathrm{N})$
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}=$ calculation factors
$\mathrm{A}, \mathrm{B}=$ exponents
(-) axial and radial bearing load must be below the muss boundary for a bearing to be suitable for the application.

Average speed and average bearing load

When the bearing load varies in steps over a specific period of time 22 , calculate the dynamic equivalent bearing.
When the speed varies, use formula 23. In these formulas q_{t} denotes the discrete time steps for the individual phases in \%.

Service life and load safety factor

Nominal service life

The nominal service life is calculated as follows:

Attention:

$$
\begin{array}{rl}
\mathrm{L}=\left(\frac{\mathrm{C}}{\mathrm{~F}_{\mathrm{m}}}\right)^{3} \cdot 10^{6} & 24 \begin{array}{ll}
\mathrm{C} & =\text { dynamic bearing load rating } \\
\mathrm{F}_{\mathrm{m}} & =\text { combined equivalent load on bearing } \\
\mathrm{L} & =\text { nominal service life in revolutions } \\
\mathrm{L}_{\mathrm{h}}=\frac{16666}{\mathrm{n}_{\mathrm{m}}} \cdot\left(\frac{\mathrm{C}}{\mathrm{~F}_{\mathrm{m}}}\right)^{3} 25 & =\text { nominal service life in operating hours } \\
\mathrm{n}_{\mathrm{m}} & =\text { average speed }
\end{array} \tag{N}
\end{array}
$$

$\mathrm{F}_{\text {comb1 } \ldots} \mathrm{F}_{\text {combn }}=$ combined equivalent axial load in phases $1 \ldots \mathrm{n}$
$\mathrm{n}_{1} \ldots \mathrm{n}_{\mathrm{n}} \quad=$ speeds in phases $1 \ldots \mathrm{n}$
$\mathrm{n}_{\mathrm{m}} \quad=$ average speed
(rpm)
$q_{t 1} \ldots q_{t n} \quad=$ discrete time steps in phases $1 \ldots n$

Pay attention to the dynamic load rating of the nut!

Static load safety factor

The static load safety factor for machine tools should not be lower than 4.

$$
\mathrm{S}_{0}=\frac{\mathrm{C}_{0}}{\mathrm{~F}_{0 \max }} 26 \quad \begin{align*}
& \mathrm{F}_{0 \max }=\text { maximum static load } \tag{N}\\
& \mathrm{C}_{0}=\text { static load capacity } \\
& \mathrm{S}_{0}=\text { static load safety factor }
\end{align*}
$$

Bosch Rexroth

Linear Motion Technology

97419 Schweinfurt / Germany

Find your local contact person here: www.boschrexroth.com/adressen

Company:
Contact:
E-mail:
Telephone:
\qquad

Application New design $\square \quad$ Revised design \square

Operating conditions

Discrete time step parameters				or				Dynamic cycle parameters								
Discrete time steps (\%)	Speed ($1 / \mathrm{min}$)	Action of for		Section	T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12
$\mathrm{T}_{1}=\quad \mathrm{n}_{1}$	$\mathrm{n}_{1}=$			Path (mm)												
$\mathrm{T}_{2}=\quad \mathrm{n}_{2}$	$\mathrm{n}_{2}=$			V (m/s)												
$\mathrm{T}_{3}=$	$\mathrm{n}_{3}=$			a (m/s ${ }^{2}$												
$\mathrm{T}_{4}=$	$\mathrm{n}_{4}=$			Time (s)												
$\mathrm{T}_{5}=$	$\mathrm{n}_{5}=$			Action of force x												
$\mathrm{T}_{6}=1 \mathrm{n}_{6}$	$\mathrm{n}_{6}=$															
		F1		F2		3			4			F5			F6	
Forces $\quad(\mathrm{N})=$																
Mass (kg) =																
Max. stroke $(\mathrm{mm})=$																

Bearing type

1. \square Tight

Tight Horizontal
Vertikal

\qquad
\qquad
\qquad

[^1]
[^0]: Separate technical dimensioning to determine the limit values is absolutely necessary for all attachments (e.g. pillow block units, bearing assembly, etc.)

[^1]: Visit out official homepage and use the provided configurators and our dimensioning program Linear Motion Designer free of charge.

