Calculation

On request, we can perform all calculations to your specifications.

Average speed and average load

- Where the speed fluctuates, the average speed n_{m} is calculated as follows:

The following applies to the effective equivalent bearing load:

See "Design Calculation Service Form" on

 page 191Where the operating conditions vary (fluctu- be calculated using the average values ating speed and load), the service life must
F_{m} and n_{m}.

$\mathrm{n}_{\mathrm{m}}=\frac{\left\|\mathrm{n}_{1}\right\| \cdot \mathrm{q}_{\mathrm{t} 1}+\left\|\mathrm{n}_{2}\right\| \cdot \mathrm{q}_{\mathrm{t} 2}+\ldots+\left\|\mathrm{n}_{\mathrm{n}}\right\| \cdot \mathrm{q}_{\mathrm{tn}}}{100 \%}$	
$\begin{aligned} n_{1}, n_{2}, \ldots n_{n} & =\text { speeds in phases } 1 \ldots n \\ n_{m} & =\text { average speed } \\ q_{t 1}, q_{t 2}, \ldots q_{t n} & =\text { discrete time step in phases } 1 \ldots n \end{aligned}$	(rpm) (rpm) (\%)

$$
\begin{array}{ll}
\mathrm{F}>2.8 \cdot \mathrm{~F}_{\mathrm{pr}} & \mathrm{~F}_{\mathrm{eff} \mathrm{n}}=\left|\mathrm{F}_{\mathrm{n}}\right| \\
\mathrm{F} \leq 2.8 \cdot \mathrm{~F}_{\mathrm{pr}} & \mathrm{~F}_{\mathrm{eff} \mathrm{n}}=\left[\frac{\left|\mathrm{F}_{\mathrm{n}}\right|}{2.8 \cdot \mathrm{~F}_{\mathrm{pr}}}+1\right]^{\frac{3}{2}} \cdot \mathrm{~F}_{\mathrm{pr}} \tag{N}
\end{array}
$$

C = dynamic load rating
$\mathrm{F}_{\text {eff } \mathrm{n}}=$ effective equivalent axial load during phase n
$F_{n}=$ axial load during phase n
$F_{\mathrm{pr}}=$ pre-tensioning force (see tables on pages 148/151)

- Where the load fluctuates and the speed is constant, the average load F_{m} is calculated as follows:
- Where both the load and the speed fluctuate, the average load F_{m} is calculated as follows:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{m}}=\sqrt[3]{\left|\mathrm{F}_{\text {eff } 1}\right|^{3} \cdot \frac{\mathrm{q}_{\mathrm{t} 1}}{100 \%}+\left|\mathrm{F}_{\text {eff } 2}\right|^{3} \cdot \frac{\mathrm{q}_{\mathrm{t} 2}}{100 \%}+\ldots+\left|\mathrm{F}_{\text {eff } n}\right|^{3} \cdot \frac{\mathrm{q}_{\mathrm{tn}}}{100 \%}} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
\mathrm{F}_{\text {eff } 1}, \mathrm{~F}_{\text {eff } 2, \ldots}, \ldots \mathrm{~F}_{\text {eff } \mathrm{n}} & =\text { effective equivalent axial load during phases } 1 \ldots \mathrm{n} \\
\mathrm{~F}_{\mathrm{m}} & \text { (N) } \\
& \text { (N) } \\
\mathrm{q}_{\mathrm{t} 1}, \mathrm{q}_{\mathrm{t} 2}, \ldots \mathrm{q}_{\mathrm{tn}} & =\text { discrete time step for } \mathrm{F}_{\text {eff } 1} 1, \ldots \mathrm{~F}_{\text {eff } n} \mathrm{(} \mathrm{\%)}
\end{align*}
$$

$$
F_{m}=\sqrt[3]{\left|F_{\text {eff } 1}\right|^{3} \cdot \frac{\left|n_{1}\right|}{n_{m}} \cdot \frac{q_{t 1}}{100 \%}+\left|F_{\text {eff } 2}\right|^{3} \cdot \frac{\left|n_{2}\right|}{n_{m}} \cdot \frac{q_{t 2}}{100 \%}+\ldots+\left|F_{\text {eff } n}\right|^{3} \cdot \frac{\left|n_{n}\right|}{n_{m}} \cdot \frac{q_{\text {tn }}}{100 \%}} 3
$$

$$
\mathrm{F}_{\text {eff } 1,} \mathrm{~F}_{\text {eff } 2, \ldots \mathrm{~F}_{\text {eff } \mathrm{n}}=} \quad \begin{aligned}
& \text { effective equivalent axial load } \\
& \\
& \text { during phases } 1 \ldots \mathrm{n}
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{m}} \quad=\text { equivalent dynamic axial load }
$$

$$
\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{n}} \quad=\text { speeds in phases } 1 \ldots \mathrm{n} \quad \text { (rpm) }
$$

$$
\mathrm{n}_{\mathrm{m}} \quad=\text { average speed } \quad(\mathrm{rpm})
$$

$$
q_{\mathrm{t} 1}, q_{\mathrm{t} 2}, \ldots \mathrm{q}_{\mathrm{tn}} \quad=\text { discrete time step for } \mathrm{F}_{\text {eff } 1}, \ldots \mathrm{~F}_{\text {eff } \mathrm{n}}
$$

$$
\begin{equation*}
L=\left[\frac{f_{a c} \cdot \mathrm{C}}{\mathrm{~F}_{\mathrm{m}}}\right]^{3} \cdot 10^{6} 4 \Rightarrow \mathrm{C}=\frac{\mathrm{F}_{\mathrm{m}}}{\mathrm{f}_{\mathrm{ac}}} \cdot \sqrt[3]{\frac{\mathrm{L}}{10^{6}}} 5 \Rightarrow \mathrm{~F}_{\mathrm{m}}=\frac{\mathrm{f}_{\mathrm{cc}} \cdot \mathrm{C}}{\sqrt[3]{\frac{\mathrm{L}}{10^{6}}}} 6 \tag{N}
\end{equation*}
$$

C = dynamic load rating
$\mathrm{F}_{\mathrm{m}}=$ equivalent dynamic axial load
$\mathrm{L} \quad=$ nominal service life in revolutions
$\mathrm{f}_{\mathrm{ac}}=$ Correction factor for tolerance grades (see page 141)

Service life in hours L_{h}

$$
\begin{array}{ll}
\mathrm{L}_{\mathrm{h}}=\frac{\mathrm{L}}{\mathrm{n}_{\mathrm{m}} \cdot 60} \quad 7 & \mathrm{~L}_{\mathrm{h}}=\text { Service life } \\
\mathrm{L}=\text { service life in revolutions } \\
\mathrm{n}_{\mathrm{m}}=\text { average speed }
\end{array}
$$

$$
\begin{aligned}
L_{h \text { machine }}=L_{h} \cdot \frac{D C_{\text {machine }}}{D C_{B A S A}} \text { 8 } & \begin{array}{l}
D C_{\text {machine }}=\text { duty cycle of the machine } \\
D C_{B A S A}=\text { duty cycle of the BASA } \\
L_{h \text { machine }}=
\end{array} \\
& \begin{array}{l}
\text { nominal service life of the } \\
\\
L_{h}
\end{array} \\
& \text { machine } \\
& \text { Ball Screw Assembly life of the }
\end{aligned}
$$

Drive torque and drive power

You must check end machining for the maximum permissible torque

Drive torque M_{ta}

For conversion of rotary motion to linear motion

Transmitted torque $\mathbf{M}_{\text {te }}$

for conversion of linear motion into rotary motion:

Drive power P_{a}

With critical applications, you must pay attention to the information below.

Static load safety factor \mathbf{S}_{0}

You must verify mathematically any structural design involving rolling contact with regard to the static load safety factor.

In this connection, $\mathrm{F}_{0 \text { max }}$ represents the maximum load amplitude that can occur, which can affect the screw drive. It does not matter whether this load is exerted only for a short period.
It may represent the peak amplitude of an overall dynamic loading.
For design purposes, the data shown in the table applies.(h)

$$
\begin{array}{ll}
M_{\mathrm{ta}}=\frac{\mathrm{F}_{\mathrm{L}} \cdot \mathrm{P}}{2000 \cdot \pi \cdot \eta} 9 & \mathrm{~F}_{\mathrm{L}}=\text { thrust force } \\
M_{\mathrm{ta}} \leq M_{\mathrm{p}} & \begin{array}{l}
M_{\mathrm{ta}}=\text { drive torque } \\
\end{array} \\
P=\text { lead } \\
& \eta=\text { mech. efficiency }(\eta \approx 0.9)
\end{array}
$$

$M_{\mathrm{te}}=\frac{\mathrm{F}_{\mathrm{L}} \cdot \mathrm{P} \cdot \eta^{\prime}}{2000 \cdot \pi}$	10	$\mathrm{~F}_{\mathrm{L}}=$ thrust force
		(N)
$\mathrm{M}_{\mathrm{te}} \leq \mathrm{M}_{\mathrm{p}}$	$\mathrm{M}_{\mathrm{p}}=$ maximum permissible drive torque	(Nm)
	$\mathrm{M}_{\mathrm{te}}=$ transmitted torque	(Nm)
	$\mathrm{P}=$ lead	(mm)
	$\eta^{\prime}=$ mech. efficiency $\left(\eta^{\prime} \approx 0.8\right)$	$(-)$

The dynamic drag torque must be taken into account for preloaded nut units.

	$M_{\mathrm{ta}}=$ drive torque	(Nm)
$\mathrm{P}_{\mathrm{a}}=\frac{\mathrm{M}_{\mathrm{ta}} \cdot \mathrm{n}}{9550}$	11	$\mathrm{n}=$ speed
	$\mathrm{P}_{\mathrm{a}}=$ drive power	(rpm)
		(kW)

$$
\begin{array}{lll}
\mathrm{S}_{0}=\mathrm{C}_{0} /\left(\mathrm{F}_{0 \max }\right) & 12 & \mathrm{C}_{0}=\text { Static load rating } \tag{N}\\
\mathrm{F}_{0 \text { max }}=\text { Maximum static load } \\
\mathrm{S}_{0}=\text { Static load safety factor }
\end{array}
$$

Design of the static load safety factor in relation to the operating conditions

Operating conditions	Static load safety factor \mathbf{S}_{0}
Overhead arrangements and applications representing a high hazard potential	≥ 12
High dynamic load when at standstill, contamination.	$8-12$
Normal design of machinery and plant without full knowledge of the load parameters or connection details.	$5-8$
Full knowledge of all the load data. Vibration-free operation is ensured.	$3-5$

If there are health and safety hazards, protection against falling loads must be provided (see the chapter entitled "Arrestor nut")

Calculation

Calculation example Service life

Operating conditions

The service life of the machine should be 40,000 operating hours with the BASA operating 60% of the time.

Proposed BASA: 63×10

$\mathrm{F}_{1}=$	50000 N at $\mathrm{n}_{1}=$	10 rpm for $\mathrm{q}_{1}=$	6% of the duty cycle
$\mathrm{F}_{2}=$	25000 N at $\mathrm{n}_{2}=$	30 rpm for $\mathrm{q}_{2}=$	22% of the duty cycle
$\mathrm{F}_{3}=$	8000 N at $\mathrm{n}_{3}=$	100 rpm for $\mathrm{q}_{3}=$	47% of the duty cycle
$\mathrm{F}_{4}=$	2000 N at $\mathrm{n}_{4}=$	1000 rpm for $\mathrm{q}_{4}=$	$\frac{25 \% \text { of the duty cycle }}{100 \%}$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{m}}=\frac{6}{100} \cdot|10|+\frac{22}{100} \cdot|30|+\frac{47}{100} \cdot|100|+\frac{25}{100} \cdot|1000| \\
& \mathrm{n}_{\mathrm{m}}=304 \mathrm{rpm}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{m}}=\sqrt[3]{|50000|^{3} \cdot \frac{|10|}{304} \cdot \frac{6}{100}+|25000|^{3} \cdot \frac{|30|}{304} \cdot \frac{22}{100}+|8000|^{3} \cdot \frac{|100|}{304} \cdot \frac{47}{100}+|2000|^{3} \cdot \frac{|1000|}{304} \cdot \frac{25}{100}} \\
& \mathrm{~F}_{\mathrm{m}}=8757 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& L=L_{h} \cdot n_{m} \cdot 60 \\
& L_{h}=L_{h \text { machine }} \cdot \frac{D C_{\text {BASA }}}{D C_{\text {machine }}} \\
& L_{h}=40000 \cdot \frac{60}{100}=24000 \mathrm{~h} \\
& L=24000 \cdot 304 \cdot 60 \\
& L=437,760,000 \text { revolutions }
\end{aligned}
$$

Basic dynamic load rating \mathbf{C}

$$
C=8757 \cdot \sqrt[3]{\frac{437760000}{10^{6}}} 5 \quad C \approx 66492 \mathrm{~N}
$$

e.g. Ball Screw Assembly, size $63 \times 10 R \times 6-6$, with preloaded FEM-E-S single flange nut, dyn. load capacity $\mathrm{C}=106,600 \mathrm{~N}$, part no. R1512 640 13,
with screw tolerance grade 7 .

Attention:
Take into account the dynamic load rating of the screw end bearing used!

Cross-check

Now the following can be selected from the product tables:

FEM-E-S, with standard backlash Load rating $\mathrm{C}_{\text {dyn }}=106,560 \mathrm{~N}$ correction factor $f_{a c}=0.9$

Cross-check

Service life of the selected ball screw drive in revolutions

$$
\mathrm{L}=\left(\frac{0,9 \cdot 106560}{8757}\right)^{3} \cdot 10^{6}
$$

$\mathrm{L} \approx 1314 \cdot 10^{6}$ revolutions

Service life in hours L_{h}
$L_{h}=\frac{1314 \cdot 10^{6}}{304 \cdot 60}$
$\mathrm{L}_{\mathrm{h}} \approx 72,039$ hours

FEM-E-S, with preload class C3

Load rating $C_{\text {dyn }}=106,560 \mathrm{~N}$
Correction factor $f_{a c}=0.9$
Pre-tensioning force $=4400 \mathrm{~N}$

Cross-check

The following applies to the effective equivalent bearing load:

$$
\begin{array}{ll}
F>2.8 \cdot F_{p r} & F_{\text {eff } n}=\left|F_{n}\right| \\
F \leq 2.8 \cdot F_{p r} & F_{\text {eff } n}=\left[\frac{\left|F_{n}\right|}{2.8 \cdot F_{p r}}+1\right]^{\frac{3}{2}} \cdot F_{p r}
\end{array}
$$

C = dynamic load rating
(N)
$\mathrm{F}_{\text {eff } \mathrm{n}}=$ effective equivalent axial load during phase n
(N)
$\mathrm{F}_{\mathrm{n}}=$ axial load during phase n
(N)
$\mathrm{F}_{\mathrm{pr}}=$ pre-tensioning force (see tables on pages 148/151)
$2,8 \times \mathrm{F}_{\mathrm{pr}}=2.8 \times 4440 \mathrm{~N}=12432 \mathrm{~N}$
$-F_{1}=50000 \mathrm{~N}>12432 \mathrm{~N}$ Nim $\mathrm{F}_{\text {eff } 1}=50000 \mathrm{~N}$
$-F_{2}=25000 \mathrm{~N}>12432 \mathrm{~N} \rightarrow \mathrm{~F}_{\text {eff } 2}=25000 \mathrm{~N}$
$-F_{3}=8000 N<12432 N+F_{\text {eff3 }}=\left(\frac{8000}{12432}+1\right)^{1,5} \cdot 4440 N=9355 N$
$-F_{4}=2000 \mathrm{~N}<12432 \mathrm{~N} \rightarrow \mathrm{~F}_{\text {eff } 4}=\left(\frac{2000}{12432}+1\right)^{1,5} \cdot 4440 \mathrm{~N}=5553 \mathrm{~N}$
$\mathrm{F}_{\mathrm{m}}=\sqrt[3]{|50000| \cdot \frac{|10|}{304} \cdot \frac{6}{100}+|25000|^{3} \cdot \frac{|30|}{304} \cdot \frac{22}{100}+|9355|^{3} \cdot \frac{|100|}{304} \cdot \frac{47}{100}+|5553|^{3} \cdot \frac{11000 \mid}{304} \cdot \frac{25}{100}}$
$\mathrm{F}_{\mathrm{m}}=9485 \mathrm{~N}$
$\mathrm{L}=\left[\frac{0,9 \cdot 106560}{9485}\right)^{3} \cdot 10^{6}=1034 \cdot 10^{6}$ revolutions
$L_{h}=\frac{1034 \cdot 10^{6}}{304 \cdot 60}=56,689$ hours

Critical speed n_{cr}

The critical speed $\mathrm{n}_{\text {cr }}$ depends on the diameter of the screw, the type of end fixity, and the free length I_{cr}. No allowance must be
made for guidance by a nut with backlash. The operating speed should not be more than 80% of the critical speed.

The characteristic speed and the max. permissible linear speed must be taken into account, see "Technical notes" on page 140.

Example

End fixity	I	II	III	IV
$f_{\text {ncr }}-$ value	27.4	18.9	12.1	4.3

For screw ends Form 31, the end fixity can be assumed to be "fixed".
Attention: End fixity IV (fixed-floating) - only recommended for short overall lengths if installed horizontally. For longer overall lengths, the floating end must be supported. Please contact our specialist department if you have any questions.

Permissible axial load on screw F_{c} (buckling load)

The permissible axial load on the screw F_{c} depends on the diameter of the screw, the
type of end fixity, and the effective unsupported length I_{c}.

A safety factor of $s \geq 2$ should be taken into account for axial loading.

Example	$=63 \mathrm{~mm}$,	
Screw diameter	$=$	10 mm,
Lead	$=$	2.4 m
Length I_{c}	End	
End fixity IV (fixed bearing - floating bearing)		

According to the graph, the theoretically permissible axial load is 360 kN . Applying the safety factor 2 yields a permissible axial load on the screw in operation of $360 \mathrm{kN}: 2=180 \mathrm{kN}$.

