General Technical Data and Calculations

Definition of dynamic load capacity

Definition of static load capacity

The radial loading of constant magnitude and direction which a linear rolling bearing can theoretically endure for a

The static loading in the direction of load which corresponds to a calculated stress of $4200 \mathrm{M}_{\mathrm{Pa}}$ at the center of the most heavily loaded rolling-element/ raceway (rail) contact with a ball conformity of $\mathrm{f}_{\mathrm{r}} \leq 0.52$, and $4600 \mathrm{M}_{\mathrm{Pa}}$ with a ball conformity of $\mathrm{f}_{\mathrm{r}} \geq 0.6$.

The calculated service life which an individual linear rolling bearing, or a group of apparently identical rolling element bearings operating under the same conditions, can attain with a

Calculate the nominal life L or L_{h} according to formula (1), (2) or (3):
nominal life of 10^{5} meters distance traveled (as per DIN 636 Part 2).

Note:
With this contact stress, a permanent overall deformation of the rolling element and the raceway will occur at the contact point corresponding to approx. 0.0001 times the rolling element diameter (as per DIN 636 Part 2).

90\% probability, with contemporary, commonly used materials and manufacturing quality under conventional operating conditions (to DIN 636 Part 2).

Nominal life at constant speed

Nominal life at variable speed

$$
\text { (2) } \quad L_{h}=\frac{L}{2 \cdot s \cdot n_{s} \cdot 60}
$$

$$
\text { (3) } \quad L_{h}=\frac{L}{3600 \cdot v_{m}}
$$

(4)

$$
v_{\mathrm{m}}=\frac{\mathrm{q}_{\mathrm{t} 1} \cdot\left|\mathrm{v}_{1}\right|+\mathrm{q}_{\mathrm{t} 2} \cdot\left|\mathrm{v}_{2}\right|+\ldots+\mathrm{q}_{\mathrm{tn}} \cdot v_{\mathrm{n}}}{100 \%}
$$

C = dynamic load capacity
$\mathrm{F}_{\mathrm{m}}=$ equivalent dynamic load
$\mathrm{L}=$ nominal life
$L_{h}=$ nominal life
$\mathrm{n}_{\mathrm{s}}=$ stroke repetition rate (full cycles)
$q_{t 1}, q_{t_{2}} \ldots q_{t n}=$ discrete time steps for

$$
v_{1}, v_{2} \ldots v_{n}
$$

$\mathrm{s}=$ length of stroke
$\mathrm{v}_{1}, \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{n}}=$ travel speeds $\quad(\mathrm{m} / \mathrm{s})$
$\mathrm{v}_{\mathrm{m}}=$ average speed
(m/s)

Equivalent dynamic load on bearing for calculation of service life

For variable load on bearing

For combined load on bearing

The combined equivalent load on bearing $F_{\text {comb }}$ resulting from combined vertical and horizontal external loads is calculated according to formula (6):

Note:

The structure of the Ball Rail System permits this simplified calculation.

For combined load on the bearing in conjunction with a torsional moment The combined equivalent load on bearing $\mathrm{F}_{\text {comb }}$ resulting from combined vertical and horizontal external loads in conjunction with a torsional moment is calculated according to formula (7):

Formula (7) applies only when using a single guide rail.

Equivalent static load on bearing

For combined static external loads vertical and horizontal - in conjunction with a static torsional moment load, calculate the combined equivalent static load on the bearing $\mathrm{F}_{\text {ocomb }}$ using formula (8).

The combined equivalent static load on the bearing $\mathrm{F}_{0 \text { comb }}$ must not exceed the static load capacity C_{0}.

Formula (8) applies only when using a single guide rail.

If the bearing is subject to variable loads, the equivalent dynamic load F_{m} must be calculated according to formula (5):
$\mathrm{F}_{\mathrm{m}} \quad=$ equivalent dynamic load(N)
$\mathrm{F}_{\text {eff1 }}, \mathrm{F}_{\text {eff2 } 2} \ldots \mathrm{~F}_{\text {effn }}=$ discrete load steps (N)
$q_{\mathrm{s} 1}, q_{\mathrm{s} 2} \ldots \mathrm{q}_{\mathrm{sn}}=$ discrete travel steps for

$$
F_{\text {effi } 1}, F_{\text {effi2 }} \ldots F_{\text {effn }}
$$

$$
\text { (5) } F_{\mathrm{m}}=\sqrt[3]{\left|\mathrm{F}_{\mathrm{eff} 1}\right|^{3} \cdot \frac{\mathrm{q}_{\mathrm{s} 1}}{100 \%}+\left|\mathrm{F}_{\mathrm{eff} 2}\right|^{3} \cdot \frac{\mathrm{q}_{\mathrm{s} 2}}{100 \%}+\ldots+\left|\mathrm{F}_{\mathrm{eff}}\right|^{3} \cdot \frac{\mathrm{q}_{\mathrm{sn}}}{100 \%}}
$$

$$
\text { (6) } F_{\text {comb }}=\left|F_{y}\right|+\left|F_{z}\right|
$$

C = dynamic load capacity ${ }^{2)} \quad$ (N)
$\mathrm{F}_{\text {comb }}=$ combined equivalent load on bearing (N)
$\mathrm{F}_{\mathrm{y},} \mathrm{F}_{\mathrm{z}}=$ dyn. external loads ${ }^{1)}$ (N)
$M_{L}=d y n$. longitudinal moment load capacity ${ }^{2)}$
(Nm)
$\mathrm{M}_{\mathrm{t}} \quad=$ dyn. torsional moment load capacity ${ }^{2)}$
(Nm)
$\mathrm{M}_{\mathrm{x}} \quad=$ dyn. torsional moment about the x-axis
(Nm)
$M_{y} \quad=$ dyn. longitudinal moment load about the y-axis
(Nm)
$\mathrm{M}_{\mathrm{z}} \quad=$ dyn. longitudinal moment load about the z-axis

$$
\text { (7) } F_{\text {comb }}=\left|F_{y}\right|+\left|F_{z}\right|+C \cdot \frac{\left|M_{x}\right|}{M_{t}}+C \cdot \frac{\left|M_{y}\right|}{M_{L}}+C \cdot \frac{\left|M_{z}\right|}{M_{L}}
$$

$$
\text { (8) } F_{0 c o m b}=\left|F_{0 y}\right|+\left|F_{0 z}\right|+C_{0} \cdot \frac{\left|M_{0 x}\right|}{M_{\mathrm{t} 0}}+C_{0} \cdot \frac{\left|\mathrm{M}_{0 y}\right|}{\mathrm{M}_{\mathrm{L} 0}}+\mathrm{C}_{0} \cdot \frac{\left|\mathrm{M}_{0 \mathrm{z}}\right|}{\mathrm{M}_{\mathrm{L} 0}}
$$

C_{0}	$=$ static load capacity ${ }^{2}$
$\mathrm{F}_{\text {Ocomb }}$	$=$ combined equivalent load on bearing
$\mathrm{F}_{0 y}, \mathrm{~F}_{0 z}$	$=$ stat. external load ${ }^{1)}$
$\mathrm{M}_{0 \mathrm{x}}$	$=$ stat. torsional moment load about the x-axis
$\mathrm{M}_{0 \mathrm{y}}$	$=$ stat. longitudinal moment load about the y-axis
$\mathrm{M}_{0 \mathrm{z}}$	$=$ stat. longitudinal moment load about the z-axis
$\mathrm{M}_{\mathrm{t} 0}$	$=$ stat. torsional moment load ${ }^{2}$
$\mathrm{M}_{\text {LO }}$	$\begin{aligned} & =\text { stat. longitudinal moment } \\ & \text { load }{ }^{2)} \end{aligned}$

1) An external load acting at an angle on the runner block is to be broken down into its F_{y} and F_{z} components, and these values are then are then to be used in formula.
2) See tables
