Technical Data

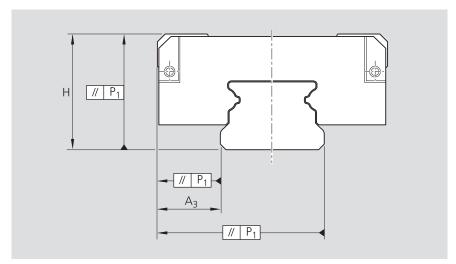
Travel speed

$$v_{max} = 3 \text{ m/s}$$

Speeds of up to 5 m/s are possible. Service life is limited by wear of plastic parts.

Acceleration

$$a_{\text{max}} = 250 \text{ m/s}^2$$

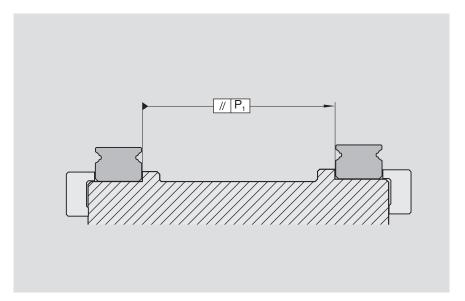

Only with preloaded systems. For non-preloaded systems: $a_{\text{max}} = 50 \text{ m/s}^2$

Operating temperature range

Brief peaks up to 100 °C are permissible.

Accuracy classes and their tolerances (μ m)

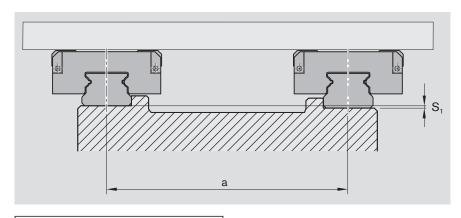

Miniature Ball Rail Systems are offered in 3 different accuracy classes.


Accuracy	4. ,		Max. difference in dimensions H and A ₃ on the same rail	
	н	A_3	Δ H , Δ A ₃ (μ m)	
Р	± 10	± 10	7	
Н	± 20	± 20	15	
N	± 30	± 30	20	
Measured	For any block/rail co	ombination	For different runner blocks	
at middle of runner block ¹⁾	at any position on ra	ail	at same position on rail	

¹⁾ For dimensions H and Δ H, the middle of the runner block is calculated from the mean of the two measuring points shown.

Parallelism offset P₁ of the Ball Rail System in service

Parallelism offset of the installed rails measured on the guide rails and on the runner blocks


Size	Parallelism offset P ₁ (mm)				
	Clearence	Preload			
Standard Guide Rails R0445					
7	0.004	0.002			
9/M3	0.005	0.002			
12	0.008	0.004			
15	0.017	0.008			
20	0.025	0.016			
Wide Guide Rails R0455					
9/M3	0.010	0.004			
12 B	0.014	0.006			
15 B	0.018	0.011			

Technical Data

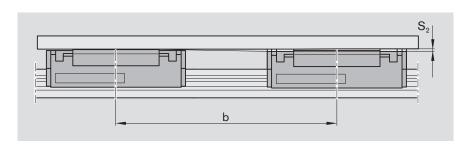
Vertical offset

Permissible vertical offset in transverse direction S₁

The permissible vertical offset S_1 includes the tolerance for dimension H (see accuracy classes).

$$S_1 = a \cdot Y$$

 S_1 = permissible vertical offset (mm)


a = distance between guide rails (mm)

Y = calculation factor

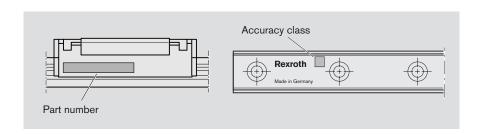
Calculation factor	For preload class	
	Clearance	Preload
Υ	3.0 · 10-4	1.5 · 10 ⁻⁴

Permissible vertical offset in longitudinal direction S₂

The permissible vertical offset S_2 includes the tolerance "max difference of dimension H on the same rail" ΔH (see accuracy classes).

$$S_2 = b \cdot 7 \cdot 10^{-5}$$

 S_2 = permissible vertical offset (mm)


= distance between runner

(mm)

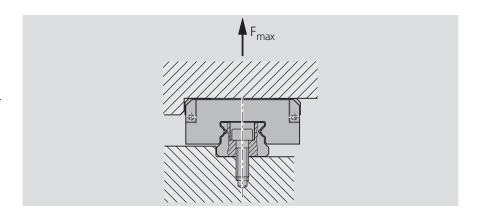
Preload and clearance

Preload class	Accuracy class			
	P	н		N
	1	1	9	9
Preload	~0 to	~0 to	~0 to	Moderate
and clearance	moderate	moderate	moderate	clearance to
	preload	preload	clearance	moderate preload

Markings on runner block and guide rail

Technical Data

General Notes


The screw connections specified in the DIN 645-1 standard can be overstressed due to the high performance capability of profiled rail systems. The most critical point is the screw connection between the guide rail and the mounting base. If the lift-off loads (F) or moments (M_t) are higher than the respective load values given in the table, the screw connections must be recalculated separately.

The data applies for the following conditions:

- Mounting screw quality 12.9
- Screws tightened using a torque wrench
- Screws lightly oiled
 (For screws in quality 8.8, an approximation factor of 0.6 can be applied)

Miniature Ball Rail Systems

Guide Rails	Runner blocks R0442			Runner blocks R0444		
	Size	F _{max} .	M_{tmax}	F _{max} .	M_{tmax}	
		(N)	(Nm)	(N)	(Nm)	
R0445	7	1000	3.2	1150	3.7	
	12	_	_	4300	23.7	
	15	3740	26.0	4280	30.0	
	No restriction for sizes					
R0445	R0442:		9/M3, 12 and 20			
	R0444:		9/M3			
R0455	R0441,R0443:		9/M3, 12 and 15			

Friction and seals

The total frictional drag of the runner block is the sum of the frictional drag of the runner block and the frictional drag of the seals (see tables at right).

The runner blocks come standard with low-friction seals.

Part number: R044. ... 01

(See "Part numbers for runner blocks"

tables)

Special versions:

Runner blocks are also available with N seals (excellent wiping action).

Part number: R044. ... **00**

(otherwise as in "Part numbers for

runner blocks" tables)

Sizes 15, 20, 9/M3 wide, 12 wide, 15 wide and long runner blocks sizes 9/M3, 12 and 15 have additional longitudinal seals for full sealing.

Size	Frictional drag of ru (without seals)	unner blocks	Frictional drag of seals	
	with clearance	with preload	Low-friction seal	N-Seal
			(-01)	(-00)
	(N)	(N)	(N)	(N)
Standar	d runner block R0442			
7	< 0.1	< 0.1	~0	0.1
9/M3	< 0.1	< 0.1	~0	0.5
12	< 0.1	< 0.2	~0	0.9
15	< 0.2	< 0.4	~0	1.2 ¹⁾
20	< 0.2	< 0.5	~0	1.5 ¹⁾
Long rur	nner block R0444			
7	< 0.1	< 0.3	~0	0.2
9/M3	< 0.2	< 0.4	~0	0.61)
12	< 0.2	< 0.4	~0	0.91)
15	< 0.2	< 0.5	~0	1.01)
Wide rur	nner block R0443			
9/M3	< 0.2	< 0.3	~0	1.41)
12	< 0.2	< 0.3	~0	1.61)
15	< 0.2	< 0.4	~0	1.81)
Wide, lo	ng runner block R044	1		
9/M3	< 0.2	< 0.4	~0	1.51)
12	< 0.2	< 0.4	~0	1.81)
15	< 0.2	< 0.5	~0	2.01)

¹⁾ with longitudinal seal