Resulting and equivalent bearing

loads

For angular-contact thrust ball bearings LGN and LGF6
Angular-contact thrust ball bearings are preloaded. The chart shows the resulting axial bearing load $F_{\text {ax }}$ as a function of preload and axial operating load $F_{\text {Lax }}$. For a purely axial load $F_{\text {comb }}=F_{a x}$.

$\alpha=60^{\circ}$	\mathbf{X}	\mathbf{Y}
$\frac{F_{\text {ax }}}{F_{\text {rad }}} \leq 2.17$	1.90	0.55
$\frac{F_{\text {ax }}}{F_{\text {rad }}}>2.17$	0.92	1.00

$\alpha \quad=$ pressure angle
$\mathrm{F}_{\mathrm{ax}}=$ resulting bearing load
$\mathrm{F}_{\text {Lax }}=$ operating load
$\mathrm{X}, \mathrm{Y}=$ dimensionless factor

If the radial operating forces are not insignificant, the equivalent bearing loads are calculated according to formula 20. Bearings for Panetary Screw Assemblies are also able to accommodate tilting moments. The moments that usually occur due to the weight and drive motion of the screw do not generally need to be incorporated into the calculation of the equivalent bearing load.

Internal preload limit and resulting bearing load

[^0]Separate technical dimensioning to determine the limit values is absolutely necessary for all attachments (e.g. pillow block units, bearing assembly, etc.)

Permissible static axial load for bearing series LGF

The permissible static axial load of LGF series bearings in screw-down direction is:

Average speed and average bearing load

When the bearing load varies in steps over a specific period of time 22 , calculate the dynamic equivalent bearing.
When the speed varies, use formula 23 . In these formulas q_{t} denotes the discrete time steps for the individual phases in $\%$.

Service life and load safety factor

Nominal service life

The nominal service life is calculated as follows:

Attention:

take the dynamic load rating of the nut into account!

Static load safety factor

The static load safety factor for machine tools should not be lower than 4.

$$
\mathrm{F}_{0 \operatorname{axp}} \leq \frac{\mathrm{C}_{0}}{2}
$$

The static axial load rating C_{0} is stated in the Dimension Tables.

$$
\begin{align*}
& F_{m}=\sqrt[3]{F_{\text {comb1 }} \cdot \frac{3}{} \cdot \frac{n_{1} \mid}{n_{m}} \cdot \frac{q_{t 1}}{100}+F_{\text {comb2 }} \cdot \frac{\left|n_{2}\right|}{n_{m}} \cdot \frac{q_{t 2}}{100}+\ldots+F_{\text {combn }} \cdot \frac{\left|n_{n}\right|}{n_{m}} \cdot \frac{q_{t n}}{100}} \tag{22}\\
& n_{m}=\frac{q_{t 1}}{100} \cdot\left|n_{1}\right|+\frac{q_{t 2}}{100} \cdot\left|n_{2}\right|+\ldots+\frac{q_{t n}}{100} \cdot\left|n_{n}\right| 23
\end{align*}
$$

$$
\mathrm{L}=\left(\frac{\mathrm{C}}{\mathrm{~F}_{\text {comb }}}\right)^{3} \cdot 10^{6} \quad 24
$$

$$
\mathrm{L}_{\mathrm{h}}=\frac{16666}{\mathrm{n}_{\mathrm{m}}} \cdot\left(\frac{\mathrm{C}}{\mathrm{~F}_{\text {comb }}}\right)^{3} 25
$$

$$
\mathrm{S}_{0}=\frac{\mathrm{C}_{0}}{\mathrm{~F}_{0 \max }} 26
$$

C	$=$ dynamic bearing load rating
$\mathrm{F}_{0 \text { axp }}$	$=$ permissible static axial bearing load
$\mathrm{F}_{\text {comb }}$	$=$ combined equivalent load
$\mathrm{F}_{\text {comb1 } 1 \ldots} \mathrm{~F}_{\text {combn }}$	$=$ combined equivalent axial load in phases $1 \ldots \mathrm{n}$
F_{m}	$=$ dynamic equivalent bearing load
L	$=$ nominal service life in revolutions
L_{h}	$=$ nominal service life in operating hours
$\mathrm{n}_{1} \ldots \mathrm{n}_{\mathrm{n}}$	$=$ speeds in phases $1 \ldots \mathrm{n}$
n_{m}	
$\mathrm{q}_{\mathrm{t} 1 \ldots} \mathrm{q}_{\mathrm{tn}}$	$=$ average speed

$\mathrm{F}_{0 \text { axp }} \quad=$ permissible static axial bearing load \quad (N)
$\mathrm{F}_{\text {comb }} \quad=$ combined equivalent load
$\mathrm{F}_{\text {comb1 }} \ldots \mathrm{F}_{\text {combn }}=$ combined equivalent axial load in phases $1 \ldots \mathrm{n}$
$F_{m} \quad=$ dynamic equivalent bearing load
$\mathrm{L} \quad=$ nominal service life in revolutions
$\mathrm{L}_{\mathrm{h}} \quad=$ nominal service life in operating hours
$n_{1} \ldots n_{n} \quad=$ speeds in phases $1 \ldots n$
$q_{t 1} \ldots q_{t n} \quad=$ discrete time steps in phases $1 \ldots n$
(N)
(N)
(N)
(N)
(-)
(h)
(rpm)
(rpm)

276 Screw Assemblies | Planetary Screw Assemblies PLSA
Design Calculation Service Form

Bosch Rexroth

Linear Motion Technology

97419 Schweinfurt / Germany

Company: \qquad
Contact:
E-mail:
Telephone:
\qquad
\qquad
\qquad

Find your local contact person here: www.boschrexroth.com/adressen

Application

New design $\square \quad$ Revised design \square

Operating conditions

Short description of the application / unusual operating conditions:
\qquad
\qquad
\qquad

[^1]
[^0]: ${ }^{1)}$ Four row version

[^1]: Visit out official homepage and use the provided configurators and our dimensioning program Linear Motion Designer free of charge.

