RD 29122

Ausgabe: 2022-08 Ersetzt: 2019-07

Regel-Wegeventile, direktgesteuert, mit elektrischer Wegrückführung und integrierter Elektronik (OBE)

Typ 4WRPE

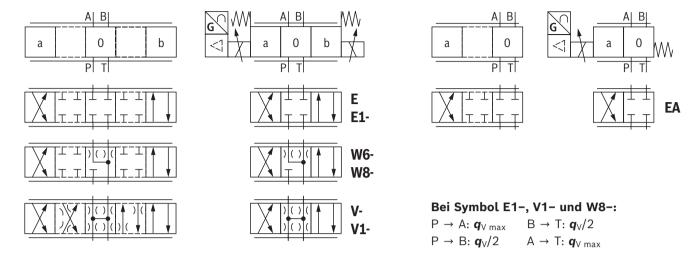
- ▶ Nenngröße 10
- Geräteserie 3X
- Maximaler Betriebsdruck 350 bar
- ▶ Nennvolumenstrom 50, 80 l/min
- ▶ Digitale Schnittstelle IO-Link für I4.0

(€ (2) (3) (3) (4) (4) (4) (5) (4) (5) (4) (5) (4) (5) (5) (6) (4) (6) (5) (6)

Merkmale

- ► Zuverlässig bewährte und robuste Bauweise
- ► Energieeffizient kein Steuerölbedarf, hohe Volumenströme bei niedriger Druckdifferenz
- ► Flexibel geeignet zur Positions- und Geschwindigkeitsregelung
- ► Präzise hohe Ansprechempfindlichkeit und geringe Hysterese
- ► Sicher Abschaltung des zweiten Magneten durch ISA-Adapter möglich
- ▶ IO-Link-Schnittstelle, wahlweise. Einsatz des Ventils mit IO-Link als ein Abschaltelement bis zu Kategorie 3, PL d gemäß EN 13849-1.

Inhalt


Merkmale	-
Bestellangaben	2
Symbole	3
Funktion, Schnitt	4 7
Technische Daten	8 1
Blockschaltbild/Reglerfunktionsblock	12, 13
Elektrische Anschlüsse und Belegung	14
Kennlinien	15 23
Abmessungen	24 26
Zubehör	27
Projektierungshinweise	27
Weitere Informationen	28

Bestellangaben

01	02	03	04	05	06	07	08		09		10		11	12		13	14	15	
4	WRP	Ε	10			S	J	_	ЗХ	/		/		24				*	l
01	4 Haupta	ansch	lüsse																4
02	Regel-We	egeve	ntil, d	irektg	esteue	ert													WRP
03	Mit integ	grierte	er Elek	tronik	(E
04	Nenngrö	ße 10)																10
05	Symbole	; mög	gliche	Ausfül	hrung	siehe	Seite	3											
lenn	volumens	strom	(∆ p =	5 bar	je Ste	euerka	nte)												
06	50 l/min	(nur	Symb	ole E,	E1-, V	und \	V6-)												50
	80 l/min																		80
olu:	nenstrom	chara	akteris	stik															
07	Progress	siv																	S
80	Überdec	kungs	sprun	g (Öff	fnungs	punkt	5 % 5	Sollwe	ert bei	Symb	olen E	E, E1-	, EA, \	N6- un	d W8	-)			J
09	Gerätese	erie 3	0 39	9 (30 .	39:	unver	änder	te Ein	bau- u	nd An	schlus	ssmaſ	Be)						3X
Dich	ungswerk	cstoff	(Dich	tungs	tauglio	chkeit	der ve	erwen	deten	Drucl	kflüssi,	gkeit	beach	ten, sie	ehe S	Seite 9)		
10	NBR-Dic	htung	en																M \$
	FKM-Dic	htung	en																V
11	Ohne Dä	impfu	ngspla	atte															ohne Bez
	Mit Däm	pfung	gsplatt	:e															D
12	Versorgu	ıngssp	oannuı	ng 24	V														24
chn	ittstellen	der A	Ansteu	ıerele	ktroni	k													
13	Sollwert	einga	ng ±1(O V															A1 ♦
	Sollwerteingang 4 20 mA						F1 ♦												
	IO-Link-S	Schnit	ttstelle	е															L1 \$
	Sollwert	±10	mA, Is	twert	4 2	0 mA,	Freig	abe (0	Geräte	stecke	er 6+P	E)							C6
14	Ohne Ele	ektror	nik-Sch	nutzm	embra	ın													ohne Bez.
	Mit Elek	tronik	k-Schu	tzmen	nbran														-967
15	Weitere	Angak	oen im	Klart	ext														

☐ Hinweis: ◊ = Vorzugstype

Symbole

Hinweis:

Darstellung nach DIN ISO 1219-1.

Hydraulische Zwischenstellungen sind gestrichelt dargestellt.

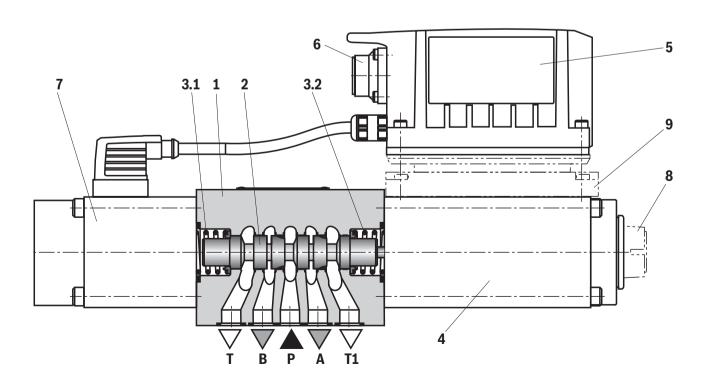
Funktion, Schnitt (4/3-Wegeventil)

Das Ventil Typ 4WRPE ist ein direktgesteuertes Regel-Wegeventil mit elektrischer Wegrückführung und integrierter Elektronik (OBE).

Aufbau

Das Ventil besteht im Wesentlichen aus:

- ► Ventilgehäuse (1)
- ► Steuerschieber (2) mit Druckfedern (3.1 und 3.2)
- ► Regelmagnet mit Wegaufnehmer (4) (optional mit Elektronik-Schutzmembran (8))
- ► Hubmagnet (7)
- ► On Board Elektronik (OBE) (5) mit analoger (6) oder IO-Link-Schnittstelle (optional mit Dämpfungsplatte (9))


Funktion

Die integrierte Elektronik (OBE) vergleicht den vorgegebenen Sollwert mit dem Lage-Istwert. Bei einer Regelabweichung wird der jeweilige Magnet angesteuert. Durch Veränderung der Magnetkraft wird der Steuerschieber (2) gegen die entsprechende Feder verstellt. Hub/Steuerschieberquerschnitt werden proportional zum Sollwert geregelt. Bei einer Sollwertvorgabe von 0 V regelt die Elektronik den Steuerschieber (2) in die Mittelstellung.

Sicherheitsfunktionalität (IO-Link-Abschaltung)

Durch Abschaltung der Versorgungsspannung am IO-Link-Master (Class B-Port), Pin2 und 5, kann das IO-Link-Ventil sicher abgeschaltet werden. Nach Abschaltung der Versorgungsspannung nimmt der Steuerschieber des Ventils die federzentrierte Mittelstellung ein. Um auch die hydraulische Voraussetzung für die Sicherheitsabschaltung zu gewährleisten, muss zusätzlich die Überdeckung des Steuerschiebers betrachtet werden.

Ausreichende Überdeckung gewährleisten die Symbole E, E1-, W6- und W8- (MTTF_D-Werte siehe Datenblatt 08012). Je nach Kategorie bzw. Applikation sind gemäß EN 13849-1 weitere Sicherheitsmaßnahmen vorzusehen, sowie die Betriebsanleitung 29118-B zu beachten. Die sichere Abschaltung ist nicht Bestandteil des IO-Link-Ventils und muss bei der sicheren Auslegung der Maschinen berücksichtigt werden.

Funktion, Schnitt (4/3-Wegeventil)

Fehlererkennung

In folgenden Fehlerfällen schaltet die Elektronik die Regelmagnete stromlos:

- Unterschreiten der minimalen Versorgungsspannung
 ≤ 15 V (Wiedereinschalten ≥ 17,5 V).
- ► Nur bei Schnittstelle "F1":
 - Unterschreitung des minimalen Sollwertstroms 2 mA (beinhaltet den Kabelbruch der Sollwertleitung (Stromschleife)).
- ▶ Nur bei Schnittstelle "L1":
 - Freigabe inaktiv, Unterbrechung der Kommunikation (Watchdog)
 - Bei internem IO-Link-Fehler
- ► Nur bei Schnittstelle "C6":
 - Zusätzlich Freigabe inaktiv

Der Steuerschieber (2) wird durch die Druckfedern (3.1 und 3.2) in der mechanischen Mittelstellung gehalten (entspricht bei Symbol V nicht der hydraulischen Mittelstellung).

Dämpfungsplatte "D"

Die Dämpfungsplatte (9) reduziert die Beschleunigungsamplituden auf die On-Board-Elektronik (Frequenzen >300 Hz).

Hinweis:

Der Einsatz der Dämpfungsplatte wird bei Anwendungen mit vorwiegend niederfrequenter Anregung <300 Hz nicht empfohlen.

Elektronik-Schutzmembran "-967"

Zur Vermeidung von Kondensat im Gehäuse der integrierten Elektronik (OBE) kann ein Elektronik-Schutzmembran (8) eingesetzt werden.

Empfohlen bei Einsatz außerhalb der industrieüblichen Bedingungen mit hoher Umgebungsluftfeuchtigkeit und starken zyklischen Temperaturwechseln (z. B. im Außenbereich).

Hinweise:

- ▶ 4/3-Regel-Wegeventile haben im abgeschalteten Zustand keine leckagefreie Absperrung. Die Leckage muss bei der Auslegung des Antriebes betrachtet werden.
- ▶ Beim Einsatz des Ventils mit IO-Link-Schnittstelle entsprechend der Kategorie 3 gemäß EN 13849-1 ist vom Maschinenintegrator eine hinreichende zyklische Diagnose bzw. Überwachung der Ventilfunktion außerhalb des Ventils durch die Steuerung vorzusehen. Ohne geeignete Diagnosemaßnahmen können nur die Kat. B oder 1 gemäß EN 13849-1 erreicht werden.

Funktion, Schnitt (4/2-Wegeventil)

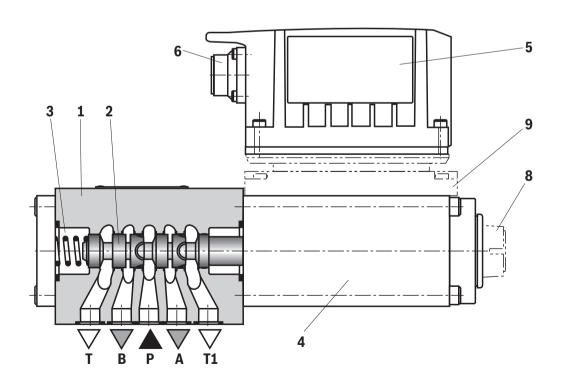
Das Ventil Typ 4WRPE ist ein direktgesteuertes Regel-Wegeventil mit elektrischer Wegrückführung und integrierter Elektronik (OBE).

Aufbau

Das Ventil besteht im Wesentlichen aus:

- ► Ventilgehäuse (1)
- ► Steuerschieber (2) mit Druckfeder (3)
- ► Regelmagnet mit Wegaufnehmer (4) (optional mit Elektronik-Schutzmembran (8))
- ► On Board Elektronik (OBE) (5) mit analoger (6) oder IO-Link-Schnittstelle (optional mit Dämpfungsplatte (9))

Funktion


Die integrierte Elektronik (OBE) vergleicht den vorgegebenen Sollwert mit dem Lage-Istwert. Bei einer Regelabweichung wird der Regelmagnet angesteuert. Durch Veränderung der Magnetkraft wird der Steuerschieber (2) gegen die Regelfeder verstellt. Hub/Steuerschieberquerschnitt werden proportional zum Sollwert geregelt. Bei einer positiven Sollwertvorgabe öffnet das Ventil von P nach B oder A nach T. Negative Sollwerte führen zu keiner Änderung der Steuerschieberposition.

Sicherheitsfunktionalität (IO-Link-Abschaltung)

Durch Abschaltung der Versorgungsspannung am IO-Link-Master (Class B-Port), Pin 2 und 5, kann das IO-Link-Ventil sicher abgeschaltet werden. Nach Abschaltung der Versorgungsspannung nimmt der Steuerschieber des Ventils die federzentrierte Mittelstellung ein. Um auch die hydraulische Voraussetzung für die Sicherheitsabschaltung zu gewährleisten, muss zusätzlich die Überdeckung des Steuerschiebers betrachtet werden.

Ausreichende Überdeckung gewährleistet das Symbol EA (MTTF_D-Werte siehe Datenblatt 08012).

Je nach Kategorie bzw. Applikation sind gemäß EN 13849-1 weitere Sicherheitsmaßnahmen vorzusehen, sowie die Betriebsanleitung 29118-B zu beachten. Die sichere Abschaltung ist nicht Bestandteil des IO-Link-Ventils und muss bei der sicheren Auslegung der Maschinen berücksichtigt werden.

Funktion, Schnitt (4/2-Wegeventil)

Fehlererkennung

In folgenden Fehlerfällen schaltet die Elektronik den Regelmagneten stromlos:

- Unterschreiten der minimalen Versorgungsspannung
 ≤ 15 V (Wiedereinschalten ≥ 17,5 V).
- ► Nur bei Schnittstelle "F1":
 - Unterschreitung des minimalen Sollwertstroms 2 mA (beinhaltet den Kabelbruch der Sollwertleitung (Stromschleife)).
- ▶ Nur bei Schnittstelle "L1":
 - Freigabe inaktiv, Unterbrechung der Kommunikation (Watchdog)
 - Bei internem IO-Link-Fehler
- ► Nur bei Schnittstelle "C6":
 - Zusätzlich Freigabe inaktiv

Dämpfungsplatte "D"

Die Dämpfungsplatte (9) reduziert die Beschleunigungsamplituden auf die On-Board-Elektronik (Frequenzen >300 Hz).

Hinweis:

Der Einsatz der Dämpfungsplatte wird bei Anwendungen mit vorwiegend niederfrequenter Anregung <300 Hz nicht empfohlen.

Elektronik-Schutzmembran "-967"

Zur Vermeidung von Kondensat im Gehäuse der integrierten Elektronik (OBE) kann ein Elektronik-Schutzmembran (8) eingesetzt werden.

Empfohlen bei Einsatz außerhalb der industrieüblichen Bedingungen mit hoher Umgebungsluftfeuchtigkeit und starken zyklischen Temperaturwechseln (z. B. im Außenbereich).

Hinweise:

- 4/2-Regel-Wegeventile haben im abgeschalteten Zustand keine leckagefreie Absperrung. Die Leckage muss bei der Auslegung des Antriebes betrachtet werden.
- ▶ Beim Einsatz des Ventils mit IO-Link-Schnittstelle entsprechend der Kategorie 3 gemäß EN 13849-1 ist vom Maschinenintegrator eine hinreichende zyklische Diagnose bzw. Überwachung der Ventilfunktion außerhalb des Ventils durch die Steuerung vorzusehen. Ohne geeignete Diagnosemaßnahmen können nur die Kat. B oder 1 gemäß EN 13849-1 erreicht werden.

(Bei Geräteeinsatz außerhalb der angegebenen Werte bitte anfragen!)

allgemein					
Anschlussart		'	Plattenaufbau		
Lage der Anschlüsse			ISO 4401-05-04-0-05		
Masse	► 4/3-Wege-Ausführung	kg	7,6		
	► 4/2-Wege-Ausführung	kg	6,0		
Einbaulage			beliebig		
Umgebungstemperaturbe	ereich	°C	-20 +60		
Lagertemperaturbereich	unter UV-Schutz	°C	+10 +40		
Transporttemperatur		°C	-30 +80		
Maximale Lagerzeit			1 (bei Einhaltung der Lagerbedingungen, siehe Betriebsanleitung 07600-B)		
Maximale relative Feucht	e (keine Betauung)	%	95		
Schutzart nach EN 60529			IP65 (bei Verwendung einer geeigneten und korrekt montierten Leitungsdose)		
Maximale Oberflächente	mperatur	°C	150		
MTTF _D -Wert nach EN ISC) 13849	Jahre	150 (weitere Angaben siehe Datenblatt 08012)		
Sinusprüfung nach	► Ohne Dämpfungsplatte		10 2000 Hz / maximal 10 g / 10 Zyklen / 3 Achsen		
DIN EN 60068-2-6	► Mit Dämpfungsplatte ¹)		10 2000 Hz/ maximal 10 g / 10 Zyklen / 3 Achsen		
Rauschprüfung nach	► Ohne Dämpfungsplatte		20 2000 Hz / 10 g _{RMS} / 30 g Peak / 30 min / 3 Achsen		
DIN EN 60068-2-64	► Mit Dämpfungsplatte ¹)		20 2000 Hz / 10 g _{RMS} / 30 g Peak / 24 h / 3 Achsen		
Transportschock nach	► Ohne Dämpfungsplatte		15 g / 11 ms / 3 Schocks / 3 Achsen		
DIN EN 60068-2-27 ► Mit Dämpfungsplatte 1)			15 g / 11 ms / 3 Schocks / 3 Achsen		
Schock nach DIN EN 60068-2-27	► Mit Dämpfungsplatte ¹⁾		35 g / 6 ms / 1000 Schocks / 3 Achsen		
Konformität	► CE nach EMV-Richtlinie 2014/30/EU, geprüft nach		EN 61000-6-2 und EN 61000-6-3		
	► RoHS-Richtlinie		2011/65/EU ²⁾		
Transportschock nach DIN EN 60068-2-27 Schock nach DIN EN 60068-2-27	 ▶ Ohne Dämpfungsplatte ▶ Mit Dämpfungsplatte ¹) ▶ Mit Dämpfungsplatte ¹) ▶ CE nach EMV-Richtlinie 2014/30/EU, geprüft nach 		15 g / 11 ms / 3 Schocks / 3 Achsen 15 g / 11 ms / 3 Schocks / 3 Achsen 35 g / 6 ms / 1000 Schocks / 3 Achsen EN 61000-6-2 und EN 61000-6-3		

hydraulisch			
Maximaler Betriebsdruck	► Anschluss A, B, P	bar	350
	► Anschluss T	bar	200
Druckflüssigkeit			siehe Tabelle Seite 9
Viskositätsbereich	► Empfohlen	mm²/s	20 100
	► Maximal zulässig	mm²/s	10 800
Druckflüssigkeitstemperatu	ırbereich (durchströmt)	°C	-20 +70
Maximal zulässiger Verschr keit; Reinheitsklasse nach	nutzungsgrad der Druckflüssig- ISO 4406 (c)		Klasse 18/16/13 ³⁾
Nennvolumenstrom bei 🕰 p	= 5 bar je Steuerkante ⁴⁾	l/min	50; 80

Nicht empfohlen bei Anwendungen mit vorwiegend niederfrequenter Anregung < 300 Hz

4) Volumenstrom bei abweichendem **Ap** (je Steuerkante):

$$q_{x} = q_{\text{Vnom}} \cdot \sqrt{\frac{\Delta p_{x}}{5}}$$

Hinweis:

Die angegebenen technischen Daten wurden gemessen mit HLP46 und $\vartheta_{\tilde{O}l}$ = 40 ±5 °C.

²⁾ Produkt erfüllt die stofflichen Anforderungen der RoHS-Richtlinie 2011/65/EU.

³⁾ Die für die Komponenten angegebenen Reinheitsklassen müssen in Hydrauliksystemen eingehalten werden. Eine wirksame Filtration verhindert Störungen und erhöht gleichzeitig die Lebensdauer der Komponenten.

(Bei Geräteeinsatz außerhalb der angegebenen Werte bitte anfragen!)

Druckflüssigkeit		Klassifizierung	Geeignete Dichtungsmaterialien	Normen	Datenblatt
Mineralöle		HL, HLP, HLPD, HVLP, HVLPD	NBR, FKM	DIN 51524	90220
Biologisch abbaubar	▶ wasserunlöslich	HETG	FKM	100 15390	
		HEES	FKM	ISO 15380	90221
	▶ wasserlöslich	HEPG	FKM	ISO 15380	
Schwerentflammbar	▶ wasserfrei	HFDU (Glykolbasis)	FKM		
		HFDU (Esterbasis)	FKM	ISO 12922	90222
		HFDR	FKM		
	► wasserhaltig	HFC (Fuchs: Hydrotherm 46M, Renosafe 500; Petrofer: Ultra Safe 620; Houghton: Safe 620; Union: Carbide HP5046)	NBR	ISO 12922	90223

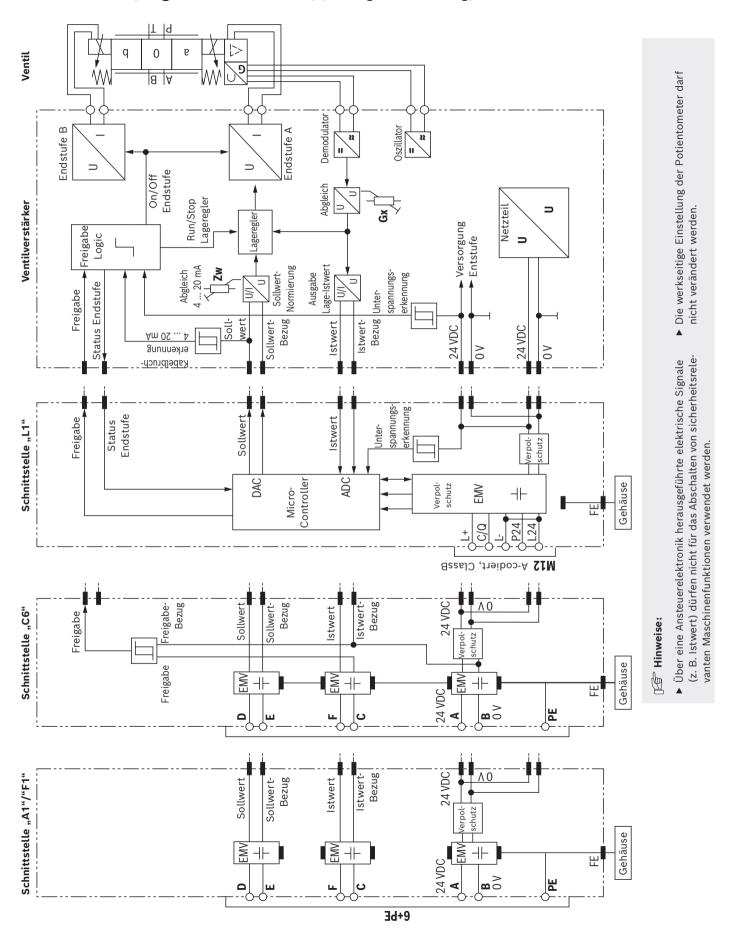
Wichtige Hinweise zu Druckflüssigkeiten:

- ▶ Weitere Informationen und Angaben zum Einsatz von anderen Druckflüssigkeiten siehe Datenblätter oben oder auf Anfrage.
- ▶ Einschränkungen bei den technischen Ventildaten möglich (Temperatur, Druckbereich, Lebensdauer, Wartungsintervalle, etc.).
- ▶ Die Zündtemperatur der verwendeten Druckflüssigkeit muss 50 K über der maximalen Oberflächentemperatur liegen.
- ▶ Biologisch abbaubar und Schwerentflammbar wasserhaltig: Bei Verwendung von Komponenten mit galvanischen Zinkbeschichtungen (z. B. Ausführung "J3" oder "J5") oder zinkhaltigen Bauteilen können geringe Mengen gelöstes Zink in das Hydrauliksystem gelangen und zu einer beschleunigten Alterung der Druckflüssigkeit führen. Als chemisches Reaktionsprodukt kann Zinkseife entstehen, welche Filter, Düsen und Magnetventile, besonders im Zusammenhang mit örtlichem Wärmeeintrag, zusetzen kann.

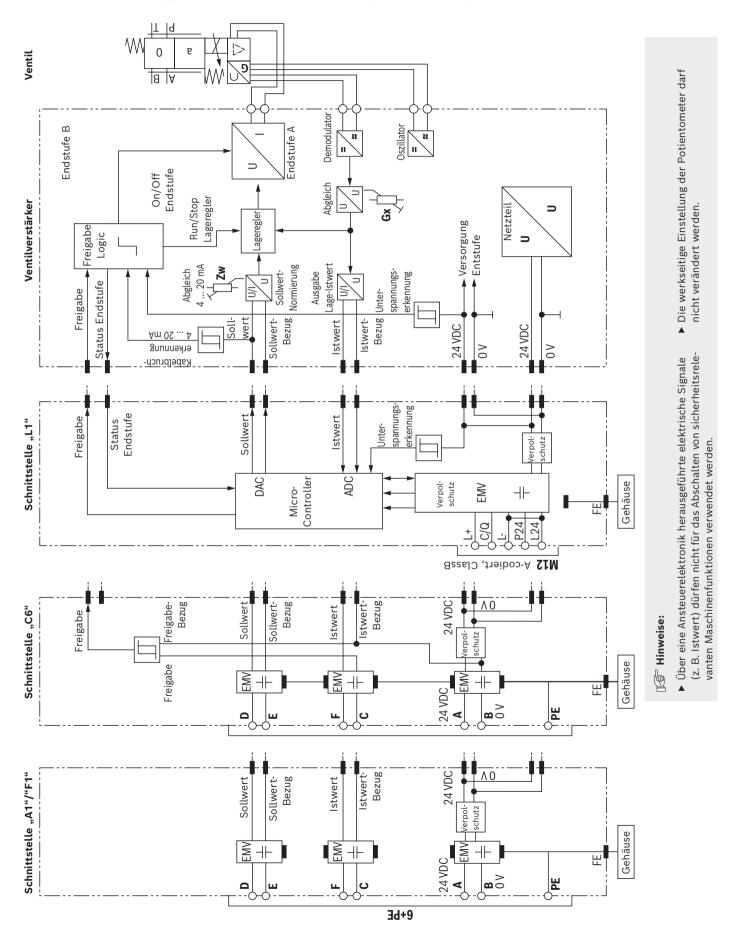
► Schwerentflammbar - wasserhaltig:

- Aufgrund höherer Kavitationsneigung bei HFC-Druckflüssigkeiten kann sich die Lebensdauer der Komponente im Vergleich zum Einsatz mit Mineralöl HLP bis zu 30 % verringern. Um den Kavitationseffekt zu vermindern, empfiehlt sich - sofern anlagenbedingt möglich - den Rücklaufdruck in den Anschlüssen T auf ca. 20 % der Druckdifferenz an der Komponente anzustauen.
- In Abhängigkeit der eingesetzten Druckflüssigkeit darf die maximale Umgebungs- und Druckflüssigkeitstemperatur 50 °C nicht übersteigen. Um den Wärmeeintrag in die Komponente zu reduzieren, ist bei Proportional- und Regelventilen das Sollwertprofil anzupassen.

statisch / dynamisch		
Hysterese	%	<0,25
Umkehrspanne	%	<0,05
Ansprechempfindlichkeit	%	<0,05
Exemplarstreuung q _{Vmax}	%	<10
Temperaturdrift (Temperaturspanne 20 °C 80 °C)		Nullpunktverschiebung <0,2
Druckdrift	%/100 bar	Nullpunktverschiebung <0,2
Nullpunktabgleich	%	±1 (ab Werk)

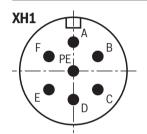

(Bei Geräteeinsatz außerhalb der angegebenen Werte bitte anfragen!)

Versorgungsspannung	► Nennwert	VDC	24	
versorgangsspannang	► Minimal	VDC	19	
	► Maximal	VDC	36	
	► Maximal Restwelligkeit	Vss		
	► Maximale Leistungsauf-	VA	40	
	nahme			
	► Absicherung extern	A _T	2,5 (träge)	
Relative Einschaltdauer n		%	S1 (Dauerbetrieb)	
Funktionserde und Absch			siehe Steckerbelegung Seite 14 (CE-gerechte Installation)	
	Differenzeingänge gegen 0 V		$D \rightarrow B; E \rightarrow B \text{ (max. 18 V)}$	
Sollwert	► Messbereich	V	±10	
(Differenzverstärker)	► Eingangswiderstend	kΩ		
Istwert (Testsignal)	► Ausgabebereich	V	±10	
	► Minimale Lastimpedanz	kΩ	>1	
alabadada tari da eta eta eta eta eta eta eta eta eta et	aldranila (ODE)	4		
, ,	ektronik (OBE) - Schnittstelle "F1"		24	
/ersorgungsspannung	▶ Nennwert	VDC	24	
	► Minimal	VDC	19	
	► Maximal	VDC	36	
	► Maximal Restwelligkeit	Vss	2,5 40	
	Maximale Leistungsauf- nahme	VA		
	► Absicherung extern	A _T	2,5 (träge)	
Relative Einschaltdauer n	ach VDE 0580	%	S1 (Dauerbetrieb)	
Funktionserde und Absch	irmung		siehe Steckerbelegung Seite 14 (CE-gerechte Installation)	
Maximale Spannung der I	Differenzeingänge gegen 0 V		$D \rightarrow B; E \rightarrow B \text{ (max. 18 V)}$	
Sollwert	► Eingangsstrombereich	mA	4 20	
	► Eingangswiderstand	kΩ	200	
Istwert (Testsignal)	► Ausgabebereich	mA	4 20	
	► Maximale Bürde	Ω	500	
elektrisch integrierte Fl	ektronik (OBE) – Schnittstelle "C6'	66		
Versorgungsspannung	▶ Nennwert	VDC	24	
	► Minimal	VDC		
	► Maximal	VDC	36	
	► Maximal Restwelligkeit	Vss		
	► Maximale Leistungsauf- nahme	VA	40	
	► Absicherung extern	A _T	2,5 (träge)	
Relative Finschaltdauer n	· · · · · · · · · · · · · · · · · · ·	%		
Relative Einschaltdauer nach VDE 0580 Funktionserde und Abschirmung			siehe Seite 14 (EMV-gerechte Installation)	
Sollwert	► Eingangsstrombereich	mA	±10	
JOHWEI L	► Eingangswiderstend	Ω	200	
Istwert (Testsignal)	Ausgabebereich	mA	4 20	
istivett (Testsigilat)	► Maximale Bürde	Ω		
 Freigabe	► Low-Pegelbereich		-3 5	
TOISane	► High-Pegebereich		11 U _B	
		v	1 1 1 1 1 2 D	
	► Maximale Stromaufnahme	mA	7,25 (U _B = 24 V); 11 (U _{B max})	


(Bei Geräteeinsatz außerhalb der angegebenen Werte bitte anfragen!)

Versorgungs-	► Ventilverstärker		
spannung	- Nennwert	VDC	24
	– Minimal	VDC	18
	– Maximal	VDC	30
	– Maximal Restwelligkeit	Vss	1,3
	Maximale Leistungsaufnahme	VA	40
	▶ IO-Link-Interface		
	– Nennwert	VDC	24
	– Minimal	VDC	18
	- Maximal	VDC	30
	– Maximal Restwelligkeit	Vss	1,3
	– Maximale Leistungsaufnahme	VA	1,2
Relative Einsch	altdauer nach VDE 0580	%	S1 (Dauerbetrieb)
Funktionserde	und Abschirmung		über Ventilblock vorsehen
Bitrate COM3		kBaud (kbit/s)	230,4
Benötigte Mast	erportklasse		Class B
Richtline			IO-Link Interface and System Specification Version 1.1.2

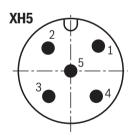
Blockschaltbild/Reglerfunktionsblock (4/3-Wege-Ausführung)

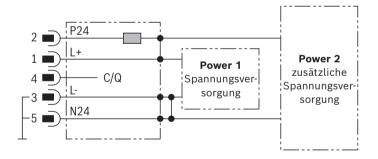


Blockschaltbild/Reglerfunktionsblock (4/2-Wege-Ausführung)

Elektrische Anschlüsse und Belegung

Kontakt	Belegung Schnittstelle								
	"A1" (6 + PE)	"F1" (6 + PE)	"C6" (6 + PE)						
Α	Versorgungsspannung	Versorgungsspannung	Versorgungsspannung						
В	GND	GND	GND, Bezugspotential Istwert/ Freigabe (Stromschleife I _{F-B} Rückführung						
С	Bezugspotential Istwert	Bezugspotential Istwert (Stromschleife I _{F-C} Rückführung)	Freigabeeingang						
D	Sollwert	Sollwert	Sollwert						
Е	Bezugspotential Sollwert	Bezugspotential Sollwert (Stromschleife I _{D-E} Rückführung)	Bezugspotential Sollwert (Stromschleife I _{D-E} Rückführung						
F	Istwert	Istwert	Istwert						
FE	Funktio	Funktionserde (direkt mit dem Ventilgehäuse verbunden)							

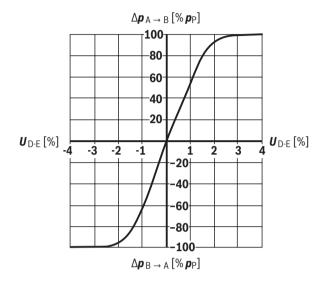



Sollwert	Positiver Sollwert (0 10 V oder 12 20 mA an D und Bezugspotential an E bewirken Volumenstrom von P → A und B → T.
	Negativer Sollwert (010 V oder 12 4 mA) an D und Bezugspotential an E bewirken Volumenstrom von P → B und A → T.
Anschlusskabel	▶ Bis 20 m Kabellänge Typ LiYCY 7 x 0,75 mm²
	▶ Bis 40 m Kabellänge Typ LiYCY 7 x 1,0 mm²
	 EMV-gerechte Installation: Abschirmung an beiden Leitungsenden auflegen Leitungsdose Metall (siehe Seite 27) verwenden Alternativ bis 30 m Kabellänge zulässig Abschirmung versorgungsseitig auflegen Leitungsdose Kunststoff (siehe Seite 27) verwendbar

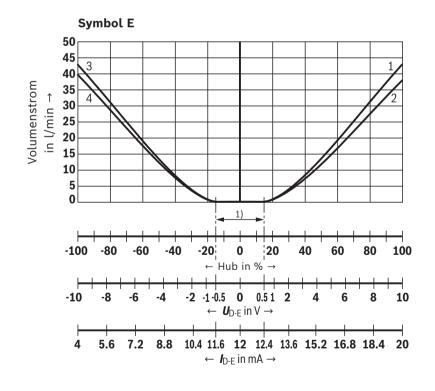
Leitungsdosen, separate Bestellung, siehe Seite 27 und Datenblatt 08006.

Gerätestecker-Belegung "L1" (M12-5, A-codiert, Class B)

Hinweise:

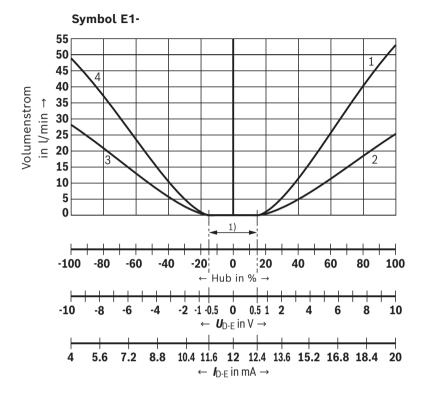

- ▶ M12 Sensor-Aktor-Anschlussleitung, 5polig; M12 Stecker/ Buchse, A-codiert, ohne Schirm, maximale Kabellänge 20 m (Spannungsabfall über das Kabel beachten; Adernquerschnitt mindestens 0,34 mm² bei Kabellänge bis 5 m).
- ▶ Leitungsdosen, separate Bestellung, siehe Seite 27 und Datenblatt 08006.
- ► Kommunikation und Parameterbeschreibung siehe Datenblatt 29400-PA

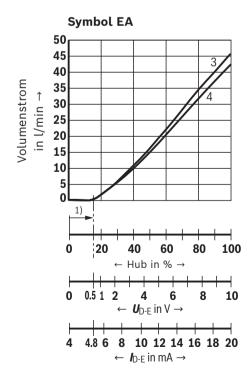
Pin	Signal	Belegung Schnittstelle L1
1	L+	Spannungsversorung IO-Link
2	P24	Spannungsversorung Ventilelektronik und Leistungsteil (Strombedarf 3 A)
3	L-	Bezugspotenzial Pin 1 1)
4	C/Q	Datenleitung IO-Link (SDCI)
5	N24	Bezugspotenzial Pin 2 1)


¹⁾ Pin 3 und 5 sind in der Ventilelektronik miteinander verbunden. Die Bezugspotenziale L- und N24 der beiden Versorgungsspannungen müssen auch netzteilseitig miteinander verbunden sein.

(gemessen mit HLP46, 9öl = 40 ±5 °C)

Druck-Signal-Kennlinie (Symbol V)

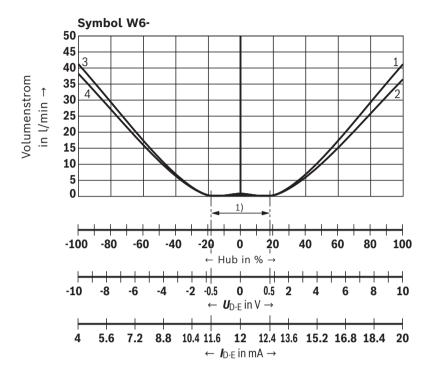

Volumenstrom-Signalfunktion (Nennvolumenstrom 50 l/min bei Δp = 5 bar/Steuerkante)


- 1) Sprungkompensation
 - **1** P-A
 - **2** B-T
 - **3** P-B
 - **4** A-T

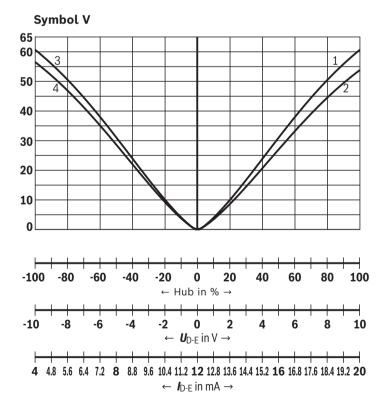
(gemessen mit HLP46, 9öl = 40 ±5 °C)

Volumenstrom-Signalfunktion (Nennvolumenstrom 50 l/min bei $\Delta p = 5$ bar/Steuerkante)

- 1) Sprungkompensation
 - **1** P-A
 - **2** B-T
 - **3** P-B
 - **4** A-T

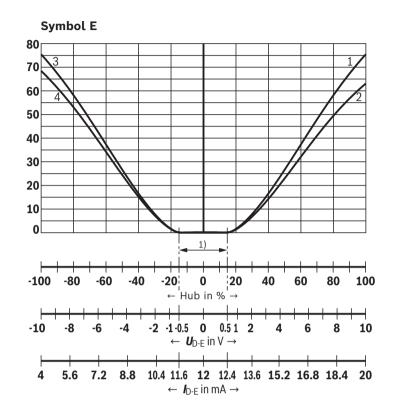


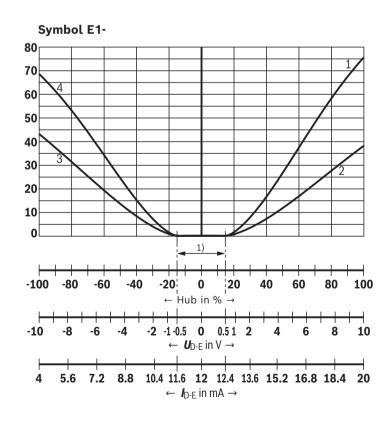
- 1) Sprungkompensation
 - **3** P-B
- **4** A-T


Volumenstrom in l/min →

(gemessen mit HLP46, $\vartheta_{\ddot{o}l}$ = 40 ±5 °C)

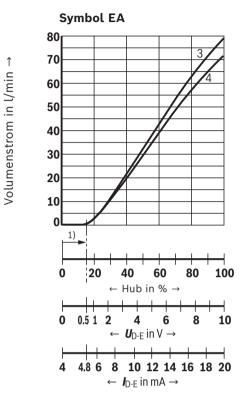
Volumenstrom-Signalfunktion (Nennvolumenstrom 50 l/min bei Δp = 5 bar/Steuerkante)


- 1) Sprungkompensation
 - **1** P-A
 - **2** B-T
 - **3** P-B
 - **4** A-T


- **1** P-A
- 2 B-T
- **3** P-B
- **4** A-T

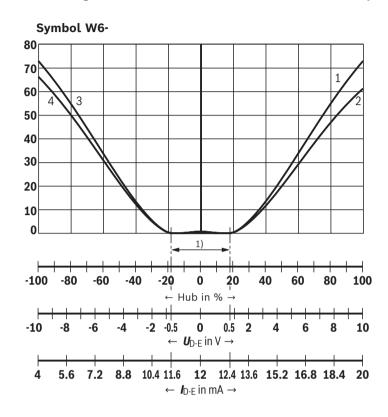
(gemessen mit HLP46, $\vartheta_{\ddot{o}l}$ = 40 ±5 °C)

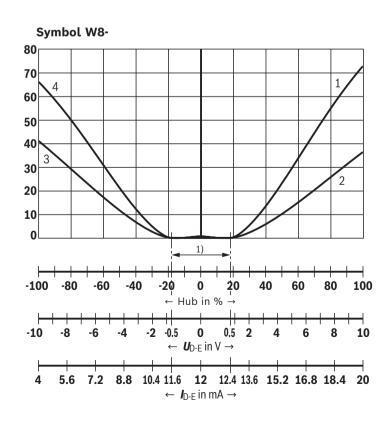
Volumenstrom-Signalfunktion (Nennvolumenstrom 80 l/min bei $\Delta p = 5$ bar/Steuerkante)


- 1) Sprungkompensation
- **1** P-A
- **2** B-T
- **3** P-B
- **4** A-T

- 1) Sprungkompensation
- **1** P-A
- **2** B-T
- **3** P-B
- **4** A-T

(gemessen mit HLP46, $\vartheta_{\ddot{o}l}$ = 40 ±5 °C)


Volumenstrom-Signalfunktion (Nennvolumenstrom 80 l/min bei $\Delta p = 5$ bar/Steuerkante)


- 1) Sprungkompensation
- **3** P-B
- **4** A-T

(gemessen mit HLP46, 9öl = 40 ±5 °C)

Volumenstrom-Signalfunktion (Nennvolumenstrom 80 l/min bei $\Delta p = 5$ bar/Steuerkante)

- 1) Sprungkompensation
- **1** P-A
- 2 B-T
- **3** P-B
- **4** A-T

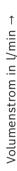
- 1) Sprungkompensation
- **1** P-A
- **2** B-T
- **3** P-B
- **4** A-T

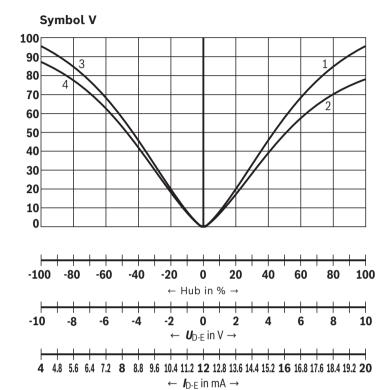
1 P-A

2 B-T3 P-B

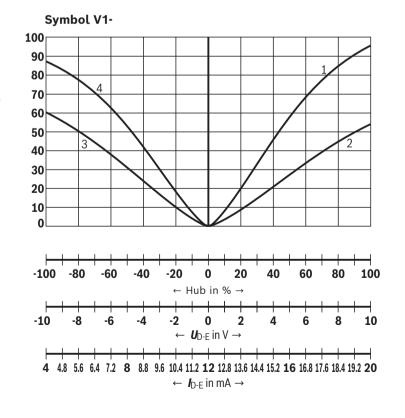
4 A-T

P-A
 B-T

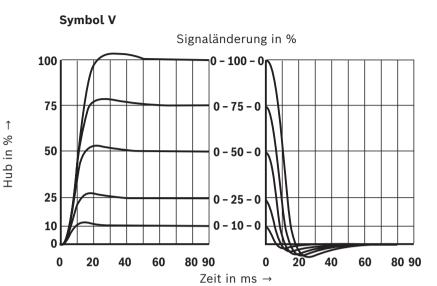

P-B

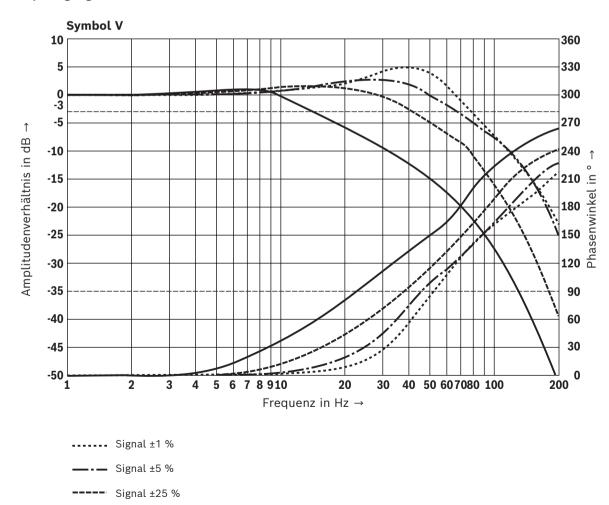

4 A-T

Kennlinien


(gemessen mit HLP46, $\vartheta_{\ddot{o}l}$ = 40 ±5 °C)

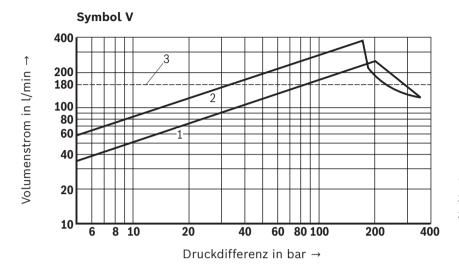
Volumenstrom-Signalfunktion (Nennvolumenstrom 80 l/min bei Δp = 5 bar/Steuerkante)

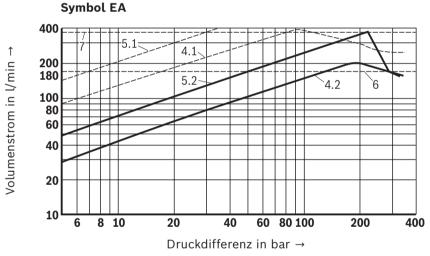




(gemessen mit HLP46, 9öl = 40 ±5 °C)

Übergangsfunktion bei sprungförmigen elektrischen Eingangssignalen (4/3-Wege-Ausführung)

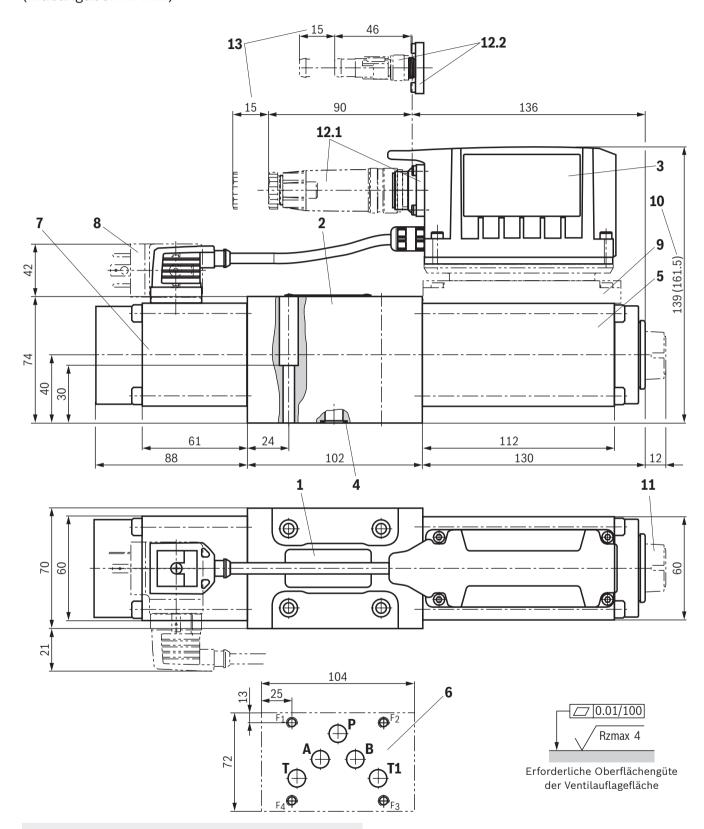

Frequenzgang


Signal ±100 %

(gemessen mit HLP46, 9öl = 40 ±5 °C)

Volumenstrom-Lastfunktion bei maximaler Ventilöffnung (Toleranz ±10 %) (4/3-Wege-Ausführung)

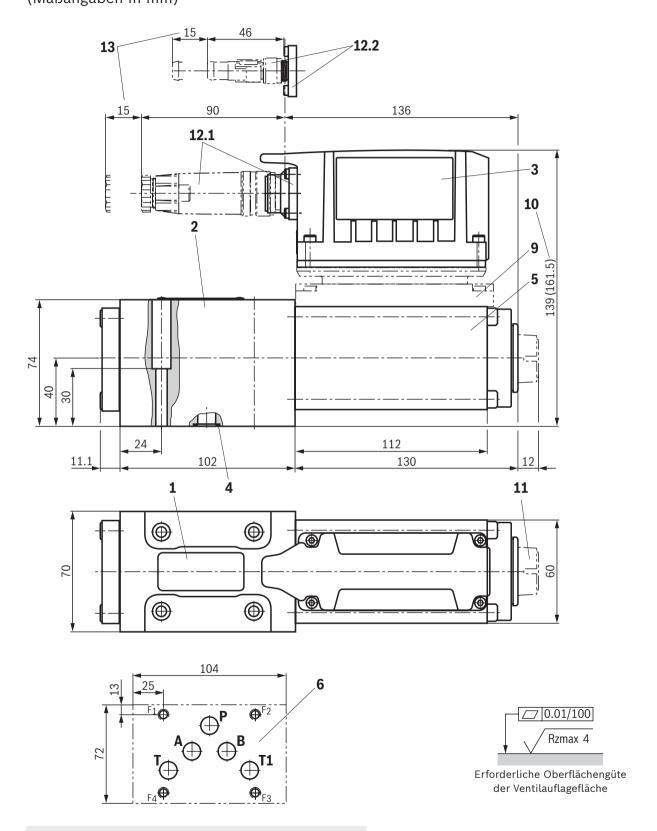
- 1 50 l/min (Summenkante)
- 2 80 l/min (Summenkante)
- 3 Empfohlene Volumenstrombegrenzung


- **4.1** 50 l/min, doppelt durchströmt (Summenkante)
- 4.2 50 l/min (Summenkante)
- 5.1 80 l/min, doppelt durchströmt (Summenkante)
- 5.2 80 l/min (Summenkante)
- **6** Empfohlene Volumenstrombegrenzung bei Einzeldurchströmung (180 l/min)
- 7 Empfohlene Volumenstrombegrenzung bei Doppeldurchströmung (360 l/min)

Übergangsfunktion bei sprungförmigen elektrischen Eingangssignalen (4/2-Wege-Ausführung)

Symbol EA Signaländerung in % 100 0 - 100 - 0 75 0 - 75 - 050 0 - 50 - 025 0 - 25 - 0 10 0 - 10 - 020 50 10 30 40 0 10 20 30 40 50 Zeit in ms →

Abmessungen (4/3-Wege-Ausführung)


(Maßangaben in mm)

- ▶ Bei den Abmessungen handelt es sich um Nennmaße, die Toleranzen unterliegen.
- ▶ Leitungsdosen, separate Bestellung, siehe Seite 27 und Datenblatt 08006.

Positionserklärungen, Ventilbefestigungsschrauben und Anschlussplatten siehe Seite 26.

Abmessungen (4/2-Wege-Ausführung) (Maßangaben in mm)

Hinweise:

- ▶ Bei den Abmessungen handelt es sich um Nennmaße, die Toleranzen unterliegen.
- ► Leitungsdosen, separate Bestellung, siehe Seite 27 und Datenblatt 08006.

Positionserklärungen, Ventilbefestigungsschrauben und **Anschlussplatten** siehe Seite 26.

Abmessungen

- 1 Typschild
- 2 Ventilgehäuse
- 3 Integrierte Elektronik (OBE)
- 4 Gleiche Dichtringe für Anschlüsse A, B, P, T, T1
- 5 Regelmagnet mit Wegaufnehmer
- 6 Bearbeitete Ventilauflagefläche, Lage der Anschlüsse nach ISO 4401-05-04-0-05
- 7 Hubmagnet
- 8 ISA-Adapter, separate Bestellung, siehe Seite 27
- 9 Dämpfungsplatte "D"
- 10 Maß in () für Ausführung mit Dämpfungsplatte "D"
- 11 Elektronik-Schutzmembran "-967"
- 12.1 Leitungsdosen für Ausführung "A1", "F1" und "C6", separate Bestellung, siehe Seite 27 und Datenblatt 08006.
- 12.2 Leitungsdosen für Ausführung "L1", separate Bestellung, siehe Seite 27 und Datenblatt 08006.
 - 13 Platzbedarf zum Entfernen der Leitungsdose

Ventilbefestigungsschrauben (separate Bestellung)

Nenngröße	Stück	Zylinderschrauben	Materialnummer
10	4	ISO 4762 - M6 x 40 - 10.9-CM-Fe-ZnNi-5-Cn-T0-H-B (Reibungszahl $\mu_{\rm ges} = 0.09 \dots 0.14$) Anziehdrehmoment $M_A = 12.5$ Nm ±10 %	R913051533
	oder		
	4	ISO 4762 - M6 x 40 - 10.9 Anziehdrehmoment <i>M_A</i> = 15,5 Nm ±10 %	Nicht im Rexroth-Lieferpro- gramm
	oder		
	4	ASME B18.3 - 1/4-20 UNC x 1 3/4" - ASTM-A574 Anziehdrehmoment M _A = 15 Nm [11 ft-lbs] ±10 %	Nicht im Rexroth-Lieferpro- gramm

Hinweis:

Das Anziehdrehmoment der Zylinderschrauben bezieht sich auf den maximalen Betriebsdruck.

Anschlussplatten (separate Bestellung) mit Lage der Anschlüsse nach ISO 4401-05-04-0-05 siehe Datenblatt 45100.

Zubehör (separate Bestellung)

Ventile mit integrierter Elektronik

Leitungsdosen 6-polig + PE	Bauform	Ausführung	Materialnummer	Datenblatt
Zum Selbstanschluss von Ventilen mit integrierter Elektronik, Rundstecker 6+PE, Leiterquerschnitt 0,5 1,5 mm²	gerade	Metall	R900223890	08006
	gerade	Kunststoff	R900021267	08006
	abgewinkelt	Kunststoff	R900217845	_

Kabelsätze 6-polig + PE	Länge in m	Materialnummer	Datenblatt
Zum Anschluss von Ventilen mit integrierter Elektro-	3,0	R901420483	08006
nik, Rundstecker 6+PE, Stecker gerade, geschirmt, angespritzte Leitungsdose, Leiterquerschnitt 0,75 mm²	5,0	R901420491	08006
	10,0	R901420496	08006
	20,0	R901448068	-

Ventile mit integrierter Elektronik und IO-Link-Schnittstelle

Kabelsätze für IO-Link	Länge in m	Materialnummer	Datenblatt
Zum Anschluss von Ventilen mit IO-Link-Schnittstelle, M12-5, A-codiert, ungeschirmt, Leiterquerschnitt 5 x 0,34 mm²	1,5	R901508849	_
	3,0	R901554223	_
	5,0	R901415747	_

Test- und Servicegeräte

	Materialnummer	Datenblatt
Servicekoffer mit Prüfgerät für Stetigventile mit integrierter Elektronik (OBE)	R901049737	29685

		Materialnummer	Datenblatt
•	ISA-Adapter für externe Abschaltung des zweiten Magneten (Anziehdrehmoment $M_A = 0.5^{+0.1}$ Nm)	1834484245	-

Projektierungshinweise

- ▶ Der Einsatz der Ventile mit IO-Link als ein Abschaltelement bis zu Kategorie 3, PL d gemäß EN 13849-1 ist ab Geräteserie 31 möglich. Zusätzliche Einsatzhinweise zur "sicheren Abschaltung" siehe Betriebsanleitung 29118-B.
- ► Bei Geräteserie 30 kann das Ventil nicht für "sichere Abschaltung" eingesetzt werden.

Weitere Informationen

	Hydraulikventile für Industrieanwendungen	Datenblatt 07600-B
•	Anschlussplatten	Datenblatt 45100
•	Druckflüssigkeiten auf Mineralölbasis	Datenblatt 90220
•	Umweltverträgliche Hydraulikflüssigkeiten	Datenblatt 90221
•	Schwerentflammbare, wasserfreie Hydraulikflüssigkeiten	Datenblatt 90222
•	Schwerentflammbare Hydraulikflüssigkeiten - wasserhaltig (HFAE, HFAS, HFB, HFC)	Datenblatt 90223
•	Zuverlässigkeitskennwerte nach EN ISO 13849	Datenblatt 08012
•	Zylinderschrauben metrisch/UNC	Datenblatt 08936
•	Montage, Inbetriebnahme und Wartung von Servo- und Regelventilen	Datenblatt 07700
•	Montage, Inbetriebnahme und Wartung von hydraulischen Anlagen	Datenblatt 07900
•	Regel-Wegeventile, direktgesteuert, mit elektrischer Wegrückführung und IO-Link-Schnittstelle	Datenblatt 29400-PA
•	Regel- und Proportional-Wegeventile mit IO-Link-Schnittstelle	Betriebsanleitung 29118-B
•	Informationen zu lieferbaren Ersatzteilen	www.boschrexroth.com/spc
•	Hydraulik über IO-Link vernetzen	www.boschrexroth.com/io-link

Bosch Rexroth AG Industrial Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52/40 30 20 my.support@boschrexroth.de www.boschrexroth.de

© Alle Rechte Bosch Rexroth AG vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen.

Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.