

Rückschlagventil

Typ L-S

*** * * ***

RD 20405

Ausgabe: 2019-02

- ▶ Nenngröße 40 ... 300
- ► Geräteserie 1X
- Maximaler Betriebsdruck 16 bar
- ► Maximaler Volumenstrom 50000 I/min

Merkmale

H8129

- ► Für Flanschanschluss
- ► Flanschanschluss nach DIN EN 1092-2 Typ 21
- ▶ 4 Öffnungsdrücke

Inhalt

Merkmale	1
Bestellangaben	2
Symbole	2
Funktion, Schnitt	3
Technische Daten	4
Kennlinien	5, 6
Abmessungen	7, 8
Weitere Informationen	8

Bestellangaben

01	02	03	04		05		06	07	08
L-S		F		-	1X	/	16		*

01	Rückschlagventil	L-S
	N	40
02	Nenngröße 40	40
	Nenngröße 50	50
	Nenngröße 65	65
	Nenngröße 80	80
	Nenngröße 100	100
	Nenngröße 125	125
	Nenngröße 150	150
	Nenngröße 200	200
	Nenngröße 250	250
	Nenngröße 300	300
03	Flanschanschluss nach DIN EN 1092-2 Typ 21	F
Öffnı	ingsdruck	
04	0 bar (Ohne Feder; Einbaulage waagerecht; Deckel oben)	0
	0,7 bar	1
	1,5 bar	2
	3,0 bar (nicht für NG250 und NG300)	3
05	Geräteserie 10 19 (10 19: unveränderte Einbau- und Anschlussmaße)	1X
06	Maximaler Betriebsdruck 16 bar	16

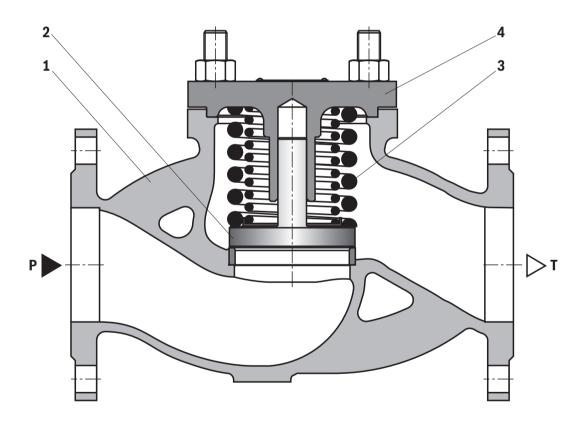
Dichtungswerkstoff

07	NBR-Dichtungen	ohne Bez.
	FKM-Dichtungen	V
	Dichtungstauglichkeit der verwendeten Druckflüssigkeit beachten. (Andere Dichtungen auf Anfrage)	
08	Weitere Angaben im Klartext	*

Symbole

Mit Feder

Funktion, Schnitt


Ventile des Typs L-S sind Rückschlagventile für Rohrleitungseinbau. Sie sind besonders für hohe Volumenströme geeignet.

Die Ventile bestehen im Wesentlichen aus Rohrleitungseinbaugehäuse (1), Hauptkolben (2), Feder (3) und Deckel (4).

In Richtung P \rightarrow T kann der Volumenstrom gegen die Federkraft den Hauptkolben (2) öffnen. In Richtung T \rightarrow P dagegen sperrt der Hauptkolben (2) leckagefrei ab.

Hinweis:

Strömungsrichtung und aufgegossenen Volumenstrompfeil beachten.

Technische Daten

(Bei Geräteeinsatz außerhalb der angegebenen Werte bitte anfragen!)

allgemein										
Nenngröße	40	50	65	80	100	125	150	200	250	300
Masse	8	11	17	22	33	52	72	123	200	310
Einbaulage	beliebig									
Umgebungstemperaturbereich °C	-30 +80 (NBR-Dichtungen)									
	−15	+80 (FI	KM-Dich	tungen)					

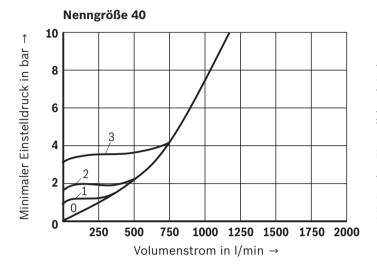
hydraulisch		
Maximaler Betriebsdruck ► Anschluss P, X	bar	16
Maximaler Volumenstrom	l/min	50000
Druckflüssigkeit		siehe Tabelle unten
Druckflüssigkeitstemperaturbereich	°C	−30 +80 (NBR-Dichtungen) −15 +80 (FKM-Dichtungen)
Viskositätsbereich	mm²/s	10 800
Maximal zul. Verschmutzungsgrad der Druckflüssigkeit Reinheitsklasse nach ISO 4406 (c)		Klasse 20/18/15 ¹⁾

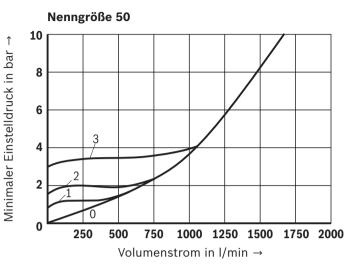
Druckflüssigkeit		Klassifizierung	Geeignete Dichtungsmaterialien	Normen	Datenblatt
Mineralöle	'	HL, HLP	NBR, FKM	DIN 51524	90220
Biologisch abbaubar	▶ wasserunlöslich	HETG	FKM	100 15000	90221
		HEES	FKM	ISO 15380	
	▶ wasserlöslich	HEPG	FKM	ISO 15380	
Schwerentflammbar	▶ wasserfrei	HFDU (Glykolbasis)	FKM	100 10000	00000
		HFDU (Esterbasis)	FKM	ISO 12922	90222
	► wasserhaltig	HFC (Fuchs: Hydrotherm 46M; Petrofer: Ultra Safe 620)	NBR	ISO 12922	90223

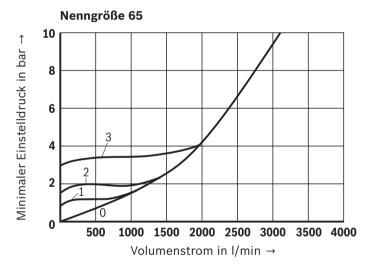
Wichtige Hinweise zu Druckflüssigkeiten:

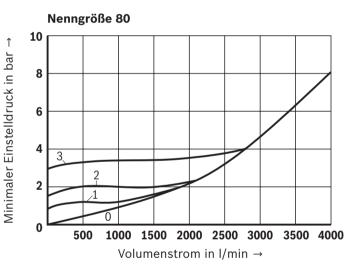
- ► Weitere Informationen und Angaben zum Einsatz von anderen Druckflüssigkeiten siehe Datenblätter oben oder auf Anfrage.
- ► Einschränkungen bei den technischen Ventildaten möglich (Temperatur, Druckbereich, Lebensdauer, Wartungsintervalle, etc.).
- ▶ Die Zündtemperatur der verwendeten Druckflüssigkeit muss 50 K über der maximalen Oberflächentemperatur liegen.

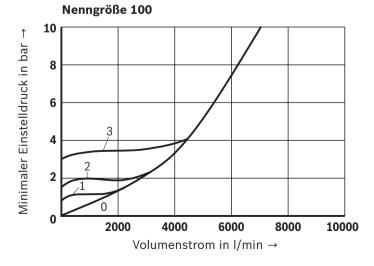
$\blacktriangleright \ \, {\sf Schwerentflammbar-wasserhaltig:}$

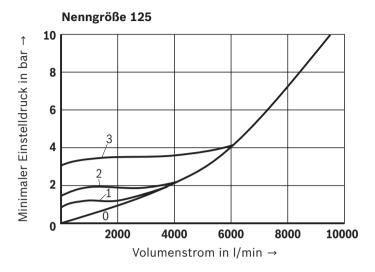

Aufgrund höherer Kavitationsneigung bei HFC-Druckflüssigkeiten kann sich die Lebensdauer der Komponente im Vergleich zum Einsatz mit Mineralöl HLP bis zu 30 % verringern. Um den Kavitationseffekt zu vermindern, empfiehlt sich - sofern anlagenbedingt möglich - den Rücklaufdruck in den Anschlüssen T auf ca. 20 % der Druckdifferenz an der Komponente anzustauen.

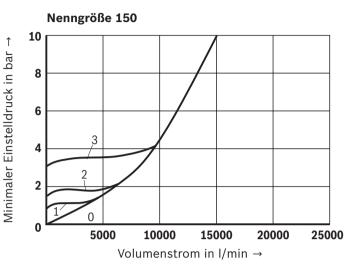

Zur Auswahl der Filter siehe www.boschrexroth.com/filter.

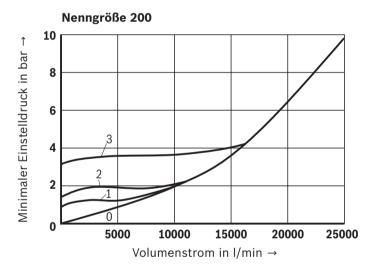

Die für die Komponenten angegebenen Reinheitsklassen müssen in Hydrauliksystemen eingehalten werden. Eine wirksame Filtration verhindert Störungen und erhöht gleichzeitig die Lebensdauer der Komponenten.

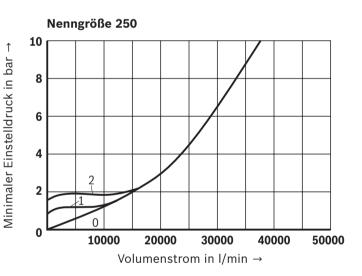

Kennlinien

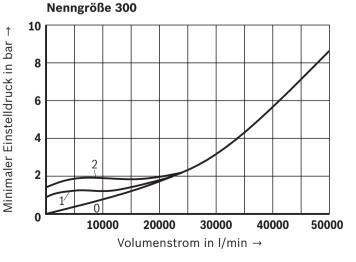

(simuliert mit HLP46, 3_{öl} = 40 ±5 °C)

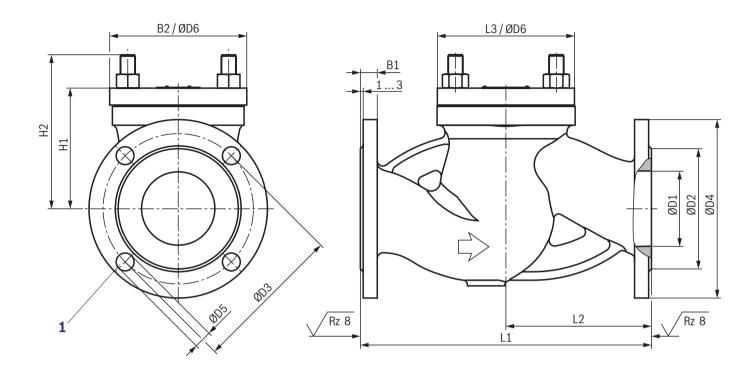





- **0** Öffnungsdruck 0 bar (Ohne Feder)
- 1 Öffnungsdruck 0,7 bar
- 2 Öffnungsdruck 1,5 bar
- 3 Öffnungsdruck 3,0 bar


Kennlinien


(gemessen mit HLP46, $\vartheta_{\ddot{o}l}$ = 40 ±5 °C)



- O Öffnungsdruck O bar (Ohne Feder)
- 1 Öffnungsdruck 0,7 bar
- 2 Öffnungsdruck 1,5 bar
- 3 Öffnungsdruck 3,0 bar

Abmessungen

(Maßangaben in mm)

NG	L1	L2	L3	H1	H2	B1	B2	ØD1	ØD2	ØD3	ØD4	ØD5	ØD6
40	198±2	99	96	90	105	13	96	40	84	110	150	19	_
50	228±2	114	104	95	112	15	106	50	99	125	165	19	_
65	288±3	144	131	120	134	15	134	65	118	145	185	19	_
80	308±3	154	144	130	146	17	147	80	132	160	200	19	_
100	348±3	174	169	155	179	19	174	100	156	180	220	19	_
125	398±3	199	-	175	200	21	-	125	184	210	250	19	255
150	478±3	239	-	195	220	21	-	150	211	240	285	23	285
200	598±4	299	-	245	266	25	-	200	266	295	340	23	345
250	728±4	364	-	295	312	27	-	250	319	355	405	28	418
300	848±5	424	-	335	353	26	_	300	370	410	460	28	484

1 Ventilbefestigungsbohrungen

Hinweis:

Bei den Abmessungen handelt es sich um Nennmaße, die Toleranzen unterliegen.

Ventilbefestigungsschrauben siehe Seite 8.

Abmessungen

Ventilbefestigungsschrauben (separate Bestellung)

NG	Stück	Sechskantschraube 1)	Sechskantmutter	M _A in Nm ²⁾
40	4	Sechskantschraube ISO 4018 - M16 - 4.6	SECHSKANTMUTTER ISO4032-M16	63
50	4	Sechskantschraube ISO 4018 - M16 - 4.6	SECHSKANTMUTTER ISO4032-M16	63
65	4	Sechskantschraube ISO 4018 - M16 - 4.6	SECHSKANTMUTTER ISO4032-M16	63
80	8	Sechskantschraube ISO 4018 - M16 - 4.6	SECHSKANTMUTTER ISO4032-M16	63
100	8	Sechskantschraube ISO 4018 - M16 - 4.6	SECHSKANTMUTTER ISO4032-M16	63
125	8	Sechskantschraube ISO 4018 - M16 - 4.6	SECHSKANTMUTTER ISO4032-M16	63
150	8	Sechskantschraube ISO 4018 - M20 - 4.6	SECHSKANTMUTTER ISO4032-M20	123
200	12	Sechskantschraube ISO 4018 - M20 - 4.6	SECHSKANTMUTTER ISO4032-M20	123
250	12	Sechskantschraube ISO 4018 - M24 - 4.6	SECHSKANTMUTTER ISO4032-M24	213
300	12	Sechskantschraube ISO 4018 - M24 - 4.6	SECHSKANTMUTTER ISO4032-M24	213

- 1) Bei Auswahl und Auslegung ist die DIN EN 1092-2 zu beachten
- 2) Anziehdrehmomente wurden berechnet mit Zylinderschrauben ISO 4762 (verzinkt) Reibungszahl μ_{ges} = 0,09 0,14

Hinweis:

Die angegebenen Anziehdrehmomente sind Richtwerte bei Verwendung von Schrauben mit den genannten Reibungszahlen und bei Verwendung eines Drehmomentschlüssels (Toleranz ±10 %).

Weitere Informationen

► Druckflüssigkeiten auf Mineralölbasis Datenblatt 90220 Umweltverträgliche Hydraulikflüssigkeiten Datenblatt 90221 Schwerentflammbare, wasserfreie Hydraulikflüssigkeiten Datenblatt 90222 Schwerentflammbare Hydraulikflüssigkeiten - wasserhaltig (HFAE, HFAS, HFB, HFC) Datenblatt 90223 Hydraulikventile für Industrieanwendungen Betriebsanleitung 07600-B Auswahl der Filter www.boschrexroth.com/filter

Industrial Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52/40 30 20 my.support@boschrexroth.de www.boschrexroth.de

Bosch Rexroth AG

© Alle Rechte Bosch Rexroth AG vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.